跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/16 16:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邵丹薇
研究生(外文):Dan-Wei Shao
論文名稱:單獨使用與合用雌二醇及三價鉻離子對絕育後母鼠脂質含量與血糖的調控作用
論文名稱(外文):Effect of estradiol and trivalent chromium alone and estradiol-trivalent chromium combination on plasma lipid and blood glucose regulation in ovariohysterectomized rats
指導教授:李衛民李衛民引用關係
指導教授(外文):Wei-Ming Lee
口試委員:賴政宏吳瑞得
口試委員(外文):Cheng-Hung LaiJui-Te Wu
口試日期:2016-06-15
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫學系暨研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:58
中文關鍵詞:雌二醇三價鉻脂質血糖絕育
外文關鍵詞:estradioltrivalent chromiumlipidblood glucoseneutering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
絕育手術可能會引起正常的大鼠體重增加,活動減少,身體脂肪含量的增加,從而增加了患有糖尿病的風險。雌激素(Estradiol)被認為可以調控脂質的代謝和糖類的穩態,同時對於攝食行為和能量平衡有著重要作用。相似的是,三價格( Trivalent Chromium),同樣被認為對糖類,脂質的代謝有著重要調控作用。因此,本研究的目的是比較單獨使用和合用雌激素與三價格,並觀察其對於絕育後大鼠脂質含量和血糖的調控影響。本實驗採用10週齡的雌性大鼠,進行卵巢子宮摘除術後,平均分為五個小組,每組6只,並控制每組大鼠的平均體重在250g左右。飼養3週後,測量體重,收集血液用以測量血糖、胰島素、甘油三酯及膽固醇含量。隨後按照分組給藥,分別為單獨鉻離子組(Cr group), 低劑量雌激素組(low-dose E2 group), 低劑量雌激素加鉻組(low-dose E2 with Cr group), 高劑量雌激素組(high-dose E2), 高劑量雌激素加鉻組(high-dose E2 with Cr group)。其中三價格的劑量為80 μg/kg,低劑量雌激素劑量為0.025 mg/kg,高劑量雌激素劑量為0.5mg/kg。所有藥物均以口服給予,每天一次,持續12週。每週測量一次體重,並分別在16、19、22、25週採血用以測量血糖、胰島素、甘油三酯和膽固醇。在實驗的最後,對所有大鼠進行腹腔注射葡萄糖耐受性試驗(IPGTT)。結果顯示,十二週中,低劑量雌激素,低劑量雌激素加鉻以及單獨鉻三組大鼠體重增長率及體重無顯著差異,高劑量雌激素組體重增長率自14週開始顯著低於單獨鉻(P<0.05),高劑量雌激素加鉻組14-19週中體重增長率顯著低於單獨鉻,但兩組之間無顯著差異。給藥12週後,單獨鉻組大鼠膽固醇和甘油三酯都上升。低劑量雌激素加鉻對膽固醇的降低效果較低劑量雌激素好,但差異不顯著;高劑量雌激素組效果較高劑量雌激素加鉻組好,差異同樣不顯著。對於甘油三酯的降低效果,低劑量雌激素和低劑量雌激素加鉻兩組給藥12週後,降低顯著,高劑量雌激素兩組則降低不顯著。但兩大組內小組間均沒有顯著差異。低劑量加鉻組在13-22週內,有較低的胰島素抵抗,相較於低劑量雌激素組,但在長期給予中,單獨低劑量雌激素擁有較低的胰島素抵抗和較高的胰島素敏感性。在13-19週內高劑量雌激素加鉻組和單獨鉻組,擁有較低的胰島素抵抗,且胰島素敏感性顯著高於單獨高劑量雌激素組。在葡萄糖耐受性試驗中,低劑量雌激素組、低劑量雌激素加鉻組和單獨鉻組,三組大鼠葡萄糖及胰島素曲線下面積均無顯著差異;高劑量雌激素加鉻組大鼠葡萄糖曲線下面積顯著高於單獨鉻組和低劑量雌激素加鉻組,胰島素曲線下面積則顯著低於單獨鉻組。顯示了高劑量雌激素在長期給予中可能會造成胰島素分泌不足和糖耐量下降;低劑量雌激素在長期給予中可能會造成胰島素抵抗上升和敏感性下降。綜合以上的結果,本研究顯示了在絕育後的大鼠,聯合使用低劑量雌激素與三價鉻離子對膽固醇和甘油三酯具有良好的降低效果。同時在短期內,雌激素和三價鉻離子的結合治療可以緩解絕育對大鼠造成的胰島素抵抗,並增加胰島素的敏感性。

Neutering in normal rats may result in weight gain, decreasing activity levels, increasing lean and fat tissue compared with intact rats. Estradiol (E2) is considered widely as a regulator of lipid metabolism and glucose homeostasis, and plays a role in feeding and energy balance regulation. Similarly, trivalent chromium (Cr3+) is a trace element which involved in the metabolism of carbohydrates, lipid and proteins. Hence, the aim of this study is to figure out the effects of combination between E2 and Cr on lipid levels, as well as blood glucose level in ovariohysterectomized rats. For this purpose, we used 10-week-old female Sprague-Dawley rats to measure the body weight, blood glucose, plasma insulin, cholesterol, and triglyceride. At the end of the study, the intraperitoneal glucose tolerance tests (IPGTTs) were conducted. In this study, there was no significant difference among Cr, low-dose E2 treated group and low-dose E2 with Cr group in the terms of the body weight and the variant body weight ratio (VarBW%). The VarBW% of high-dose E2 group showed markedly lower than Cr group since 14th week, meanwhile, the high-dose E2 with Cr group showed notably lower than that in Cr group in the VarBW% values during 14th to 19th week (P<0.05). However, there was no significant difference between the values. Compared with before and after treatments, low-dose E2 with Cr group showed better effects on the decrease of cholesterol and triglyceride than low-dose E2 group, but no significant difference. There was no observable difference between high-dose E2 group and high-dose E2 with Cr group on the decrease of cholesterol and triglyceride. During 13th to 22nd week, low-dose E2 with Cr group had lower insulin resistance and higher insulin sensitivity than that in low-dose E2 group, although the situation was opposite at 25th week. Similarly, since 13th to 19th week, high-dose E2 with Cr group had lower insulin resistance and significantly higher insulin sensitivity than that in high-dose E2 group (P<0.05). In the IPGTTs, both glucose and insulin AUC0-90 of Cr group, low-dose E2 group and low-dose E2 with Cr group had no significant difference. The glucose AUC0-90 of high-dose E2 with Cr group was signally higher than Cr group and high-dose E2 group, but the insulin AUC0-90 was markedly lower than Cr group (P<0.05). According to all results, the combination of low dosage E2 and Cr showed the positive effects on the decrease of cholesterol and triglyceride. At the same time, during short-term treatments, the combination of E2 and Cr could remit insulin resistance induced by neutering, as well as the increase insulin sensitivity.

摘要 i
Abstract iii
Content v
List of tables vii
List of figures viii
Chapter 1 Introduction 1
1.1 Obesity and diabetes mellitus 1
1.1.1 Introduction of diabetes mellitus 1
1.1.2 Introduction of obesity 1
1.1.3 Introduction of cholesterol and triglyceride ..2
1.1.4 The effect of neutering on obesity and diabetes 2
1.2 Trivalent chromium 3
1.2.1 Introduction 3
1.2.2 The biological function of chromium 4
1.2.3 Chromium in obesity and lipid metabolism 4
1.2.4 Chromium in diabetes mellitus 5
1.3 Estrogen 6
1.3.1 Introduction of estrogen 6
1.3.2 The effect of estrogen in obesity 6
1.3.3 The effect of estrogen in diabetes mellitus 7
Chapter 2 Materials and methods 9
2.1 Animals 9
2.2 Experimental design 9
2.2.1 Ovariohysterectomy surgery (OHE) 10
2.2.2 Intraperitoneal glucose tolerance test (IPGTT) 10
2.3 Measurement of body weight and the variant body weight ratio% 10
2.4 Blood collection 11
2.5 Measurement of the concentration of glucose, insulin, triglyceride and cholesterol 11
2.5.1 Measurement of the concentration of glucose 11
2.5.2 Measurement of plasma insulin concentration 11
2.5.3 Measurement of triglyceride 12
2.5.4 Measurement of cholesterol 12
2.6 Homeostasis model assessment analysis (HOMA-IR) 13
2.7 QUICK analysis 13
2.8 Statistical analysis 13
Chapter 3 Results 14
3.1 The change of body weight and VarBW% 14
3.2 The concentration of plasma cholesterol 14
3.3 The concentration of plasma triglyceride 15
3.4 The concentration of blood glucose 16
3.5 The concentration of plasma insulin 16
3.6 The HOMA values 17
3.7 The QUICK value 17
3.8 The change of glucose and plasma insulin level during IPGTT. 17
Chapter 4 Discussion 43
4.1 The change of body weight 43
4.2 The concentration of cholesterol and triglyceride 44
4.3 The concentration of blood glucose and plasma insulin 45
4.4 The HOMA-IR and QUICK value 46
4.5 The change of blood glucose and plasma insulin level after IPGTTs 47
4.6 Conclusions 48
Reference 49



Anderson R. Effects of chromium on body composition and weight loss. Nutr Rev. 2009; 56: 266-270.
Anderson R. Recent advances in the clinical and biochemical manifestation of chromium deficiency in human and animal nutrition. J Trace Elem Exp Med. 1998;11: 241-250.
Anderson RA, Cheng N, Bryden NA, Polansky M, Cheng N, Chi J, Feng J. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes. 1997; 46: 1786-1791.
Anderson RA. Essentiality of chromium in humans. Sci Total Environ. 1989; 86: 75–81
Asarian L, Geary N. Cyclic estradiol treatment normalizes body weight and restores physiological patterns of spontaneous feeding and sexual receptivity in ovariectomized rats. Horm Behav. 2002; 42: 461–471.
Blaustein JD, Wade GN. Ovarian influences on meal patterns of female rats. Physiol
Behav. 1976; 17: 201–208.
Bonavera J. Anorectic effects of estrogen may be mediated by decreased neuropeptide- Y release in the hypothalamic paraventricular nucleus. Endocrinology. 1994;134: 2367-2370.
Bouchard C, Perusse L. Genetics of obesity. Annu Rev Nutr. 1993; 13: 337-354.
Brown L, Clegg D. Central effects of estradiol in the regulation of food intake, body weight, and adiposity. J Steroid Biochem Mol Biol. 2010;122: 65-73.
Brown L, Gent L, Davis K, Clegg D. Metabolic impact of sex hormones on obesity. Brain Research. 2010; 1350:77-85.
Butcher R, Collins W, Fugo N. Plasma concentration of LH, FSH, prolactin, progesterone and estradiol-17β throughout the 4day estrous cycle of the rat. Endocrinology. 1974; 94:1704-1708.
Butera P. Estradiol and the control of food intake. Physiol Behav. 2010; 99: 175-180.
Cefalu WT, Rood J, Pinsonat P, Qin J, Sereda O, Levitan L. Characterization of the metabolic and physiologic response to chromium supplementation in subjects with type 2 diabetes mellitus. Metabolism. 2010; 59: 755–762.
Ciana P, Raviscioni M, Mussi P. In vivo imaging of transcriptionally active estrogen receptors. Nat Med. 2002; 9: 82-86.
Clegg D, Brown L, Woods S, Benoit S. Gonadal hormones determine sensitivity to central leptin and insulin. Diabetes. 2006; 55: 978-987.
Clegg D, Brown L, Zigman J, Kemp C, Strader A, Benoit S, Geary N. Estradiol-dependent decrease in the orexigenic potency of ghrelin in female rats. Diabetes. 2007; 56: 1051-1058.
Clodfelder BJ, Vincent JB. The time-dependent transport of chromium in adult rats from the bloodstream to the urine. J Biol Inorg Chem. 2005; 10: 383–393.
Dandona P. Metabolic Syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005; 111: 1448-1454.
Davies S, Howard JM, Hunnisett A, Howard M. Age-related decreases in chromium levels in 51,665 hair, sweat, and serum samples from 40,872 patients—implications for the prevention of cardiovascular disease and type II diabetes mellitus. Metabolism. 1997; 46: 469-473.
Despres JP. Abdominal obesity as important component of insulin-resistance syndrome. Nutrition.1993; 9: 452–459.
Dowling HJ, Offenbacher EG, Pi-Sunyer FX. Absorption of inorganic trivalent chromium from the vascular perfused rat small intestine. J Nutr. 1989; 119: 1138–1145
Ducros V. Chromium metabolism, a literature review. Biol Trace Elem Res. 1992; 32: 65–77.
Feng W, Mao G, Li Q, Wang W, Chen Y, Zhao T, Wu X. Effects of chromium malate on glycometabolism, glycometabolism-related enzyme levels and lipid metabolism in type 2 diabetic rats: a dose-response and curative effects study. J Diabetes Investig. 2015; 6: 396-407.
Feng W, Zhao T, Mao G, Wang W, Feng Y, Li F, Wu X. Type 2 diabetic rats on diet supplemented with chromium malate show improved glycometabolism, glycometabolism-related enzyme levels and lipid metabolism. PLOS ONE. 2015; 10: e0125952.
Fernández-Pérez L, Flores-Morales A. Estrogens in the control of growth hormone actions in liver. Intech Open Access Publisher. 2012.
Fettman M, Stanton C, Banks L, Hamar D, Johnson D, Hegstad R, Johnston S. Effects of neutering on bodyweight, metabolic rate and glucose tolerance of domestic cats. Res Vet Sci. 1997; 62: 131-136.
Foryst-Ludwig AKintscher U. Metabolic impact of estrogen signalling through ERalpha and ERbeta. J Steroid Biochem Mol Biol. 2010; 122: 74-81.
Friel P N, Hinchcliffe C, Wright J V. Hormone replacement with estradiol: conventional oral doses result in excessive exposure to estrone. Altern Med Rev. 2005; 10: 36-41.
Geary N, Asarian L, Korach K, Pfaff D, Ogawa S. Deficits in E2-dependent control of feeding, weight gain, and cholecystokinin satiation in ER-α null mice. Endocrinology. 2001; 142: 4751-4757.
Geary N. Estradiol, CCK and satiation. Peptides. 2001; 22: 1251-1263.
Geisler JG, Zawalich W, Zawalich K, Lakey JR, Stukenbrok H, Milici AJ, Soeller WC. Estrogen can prevent or reverse obesity and diabetes in mice expressing human islet amyloid polypeptide. Diabetes. 2002; 51: 2158–2169
Gentry R, Wade G. Sex differences in sensitivity of food intake, body weight, and running-wheel activity to ovarian steroids in rats. J Comp Physiol Psychol. 1976; 90: 747-754.
Gonzalez C. Role of 17beta-estradiol and/or progesterone on insulin sensitivity in the rat: implications during pregnancy. J Endocrinol. 2000; 166: 283-291.
Hanukoglu I. Steroidogenic enzymes: Structure, function, and role in regulation of steroid hormone biosynthesis. J Steroid Biochem Mol Biol. 1992; 43: 779-804.
Hong J, Stubbins RE, Smith RR, Harvey AE, Nunez NP. Differential susceptibility to obesity between male, female and ovariectomized female mice. Nutr J. 2009; 8:11.
Iavarone M, Lampertico P, Seletti C, Francesca Dnonato M, Ronchi G, Del Minno E, Colombo M. The clinical and pathogenetic significance of estrogen receptor‐β expression in chronic liver diseases and liver carcinoma. Cancer. 2003; 98: 529-534.
Kahn B B, Flier J S. Obesity and insulin resistance. J Clin Invest. 2000; 106: 473-481.
Kim DS, Kim TW, Kang JS. Chromium picolinate supplementation improves insulin sensitivity in Goto-Kakizaki diabetic rats. J Trace Elem Med Bio. 2004; 17: 243-247.
Kim H, Kalkhoff R. Sex steroid influence on triglyceride metabolism. JCI Insight. 1975; 56: 888-896.
Kitabchi A, Umpierrez G, Miles J, Fisher J. Hyperglycemic crises in adult patients with diabetes. Diabetes Care. 2009; 32: 1335-1343.
Komorowski JR, Tuzcu M, Sahin N, Juturu V, Orhan C, Ulas M. Chromium picolinate modulates serotonergic properties and carbohydrate metabolism in a rat model of diabetes. Biol Trace Elem Res. 2012; 149: 50–56.
Kuryl T, Debski B, Martinik K. The effect of microelements supplementation on beta-oxidation activity in healthy and type 1 diabetic rats. Cent Eur J Public Health. 2008; 16: 205–208.
Lampe MA, Burlingame AL, Whitney J A, Williams ML, Brown BE, Roitamn E, Elias PM. Human stratum corneum lipids: characterization and regional variations. J Lipid Res, 1983, 24: 120-130.
Lau FC, Bagchi M, Sen CK, Bagchi D. Nutrigenomic basis of beneficial effects of chromium(III) on obesity and diabetes. Mol Cell Biochem. 2008; 317: 1–10.
Le May C, Chu K, Hu M, Ortega CS, Simpson ER, Korach KS. Estrogens protect pancreatic betacells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci USA. 2006; 103: 9232–9237.
Lee CG, Carr MC, Murdoch SJ, Mithchell E, Woods NF, Wener MH, Brunzell JD. Adipokines, inflammation, and visceral adiposity across the menopausal transition: a prospective study. J Clin Endocrinol Metab. 2009; 94: 1104-1110.
Lefavi R, Dennis Wilson G, Keith R, Anderson R, Blessing D, Hames C, McMillan J. Lipid-lowering effect of a dietary chromium (III)—Nicotinic acid complex in male athletes. Nutrition Research. 1993; 13: 239-249.
Lewicki S, Zdanowski R, Krzyzowska M. The role of Chromium III in the organism and its possible use in diabetes and obesity treatment. Ann Agric Environ Med. 2014; 21: 331-335.
Litwak S, Wilson J, Chen W, Garcia-Rudaz C, Khaksari M, Cowley MA, Enriori PJ. Estradiol prevents fat accumulation and overcomes leptin resistance in female high-fat diet mice. Endocrinology. 2014; 155: 4447-4460.
Liu S, Le MC, Wong WP, Ward RD, Clegg DJ, Marcelli M. Importance of extranuclear estrogen receptor-alpha and membrane G protein-coupled estrogen receptor in pancreatic islet survival. Diabetes. 2009; 58: 2292–2302.
Liu S, Mauvais-Jarvis F. Minireview: estrogenic protection of β-Cell failure in metabolic diseases. Endocrinology. 2010; 151: 859-864.
Lukaski HC, Siders WA, Penland JG. Chromium picolinate supplementation in women: effects on body weight, composition, and iron status. Nutrition. 2007; 23: 187–195.
Mattheeuws D, Rottiers R, Kaneko J. Diabetes mellitus in dogs: relationship of obesity to glucose tolerance and insulin response. Am J Vet Res. 1984; 45: 98-103.
Mertz W. Chromium in human nutrition: a review. J Nutr. 1993; 123: 626–633.
Mertz W. The newer trace elements. Biol Trace Elem Res. 1979; 1: 259-270.
Mirecki-Garrido M, Guerra B, Mateos-Díaz C. The influence of estrogens on the biological and therapeutic actions of growth hormone in the Liver. Pharmaceuticals. 2012; 5: 758-778.
Mohamed M, Abdel-Rahman A. Effect of long-term ovariectomy and estrogen replacement on the expression of estrogen receptor gene in female rats. Eur J Endocrinol 2000; 142: 307-314.
Nelson DL, Lehninger AL, Cox MM. Lehninger principles of biochemistry. Macmillan. 2008.
Nelson RW, Himsel CA, Feldman EC, Bottoms GD. Glucose tolerance and insulin response in normal-weight and obese cats. Am J Vet Res. 1990; 51: 1357-1362.
Offenbacher E. Chromium in human nutrition. Annu Rev Nutr. 1988; 8: 543-563.
Ohh ST, Lee JY. Dietary chromium-methionine chelate supplementation and animal performance. Asian-Aust. J Anim Sci. 2005; 18: 898-907.
Pagan JD, Jackson SG, Duren SE. The effect of chromium supplementation on metabolic response to exercise in thoroughbred horses. Biotechnology in the Feed Industry: Proceedings of Alltech’s Eleventh Annual Symposium. Nottingham University Press, Nottingham, UK. 1995; 249-256.
Paik SG, Michelis MA, Kim YT, Shin S. Induction of insulin-dependent diabetes by streptozotocin Inhibition by estrogens and potentiation by androgens. Diabetes. 1982; 31: 724-729.
Pattar G, Tackett L, Liu P, Elmendorf J. Chromium picolinate positively influences the glucose transporter system via affecting cholesterol homeostasis in adipocytes cultured under hyperglycemic diabetic conditions. Mutat Res-Gen Tox En. 2006; 610: 93-100.
Pittler M, Stevinson C, Ernst E. Chromium picolinate for reducing body weight: Meta-analysis of randomized trials. Int J Obes Relat Metab Disord. 2003; 27: 522-529.
Poehlman E T, Toth M J, Gardner A W. Article retracted: changes in energy balance and body composition at menopause: a controlled longitudinal study. Ann Inter Med. 1995; 123: 673-675.
Polotsky H, Polotsky A. Metabolic implications of menopause. Semin Reprod Med. 2010; 28:426-434.
Racek J, Trefil L, Rajdl D, Mudrová V, Hunter D, Senft V. Influence of chromium-enriched yeast on blood glucose and insulin variables, blood lipids, and markers of oxidative stress in subjects with type 2 diabetes mellitus. Biol Trace Elem Res. 2006; 109: 215–230.
Riales R, Albrink M J. Effect of chromium chloride supplementation on glucose tolerance and serum lipids including high-density lipoprotein of adult men. Am J Clin Nutr. 1981; 34: 2670-2678.
Roussel AM, Bureau I, Favier M, Polansky MM, Bryden NA, Anderson RA. Beneficial effects of hormonal replacement therapy on chromium status and glucose and lipid metabolism in postmenopausal women. Maturitas. 2002; 42: 63-69.
Ryan GJ, Wanko NS, Redman AR, Cook CB. Chromium as adjunctive treatment for type 2 diabetes. Ann Pharmacother. 2003; 37: 876–885.
Salpeter S, Walsh J, Ormiston T, Greyber E, Buckley N, Salpeter E. Meta-analysis: effect of hormone-replacement therapy on components of the metabolic syndrome in postmenopausal women. Diabetes Obes Metab. 2006; 8: 538-554.
Santollo J, Eckel LA. Estradiol decreases the orexigenic effect of neuropeptide
Y, but not agouti-related protein, in ovariectomized rats. Behav. Brain Res. 2008; 191
:173–177.
Sharma S, Agrawal RP, Choudhary M, Jain S, Goyal S, Agarwal V. Beneficial effect of chromium supplementation on glucose, HbA1C and lipid variables in individuals with newly onset type-2 diabetes. J Trace Elem Med Biol. 2011; 25: 149–153.
Shaw MA, Whitaker EM, Hervey E, Hervey GR. The effects of ovarian hormones on regulation of energy balance in Zucker rats. J Endocrinol. 1983; 98: 165-171.
Shen M, Kumar S, Shi H. Estradiol regulates insulin signaling and inflammation in adipose tissue. Horm Mol Biol Clin Investig. 2014; 17.
Shen M, Shi H. Sex hormones and their receptors regulate liver energy homeostasis. Int J Endocrinol. 2015:1-12.
Shi H, Kumar S P D S, Liu X. G protein-coupled estrogen receptor in energy homeostasis and obesity pathogenesis. Prog Mol Biol Transl Sci. 2013; 114: 193-250.
Shi H, Seeley R, Clegg D. Sexual differences in the control of energy homeostasis. Front Neuroendocrinol. 2009; 30: 396-404.
Shinde U, Sharma G, Xu Y, Dhalla N, Goyal R. Insulin sensitising action of chromium picolinate in various experimental models of diabetes mellitus. J Trace Elem Med Biol. 2004; 18: 23-32.
Simpson E. Sources of estrogen and their importance. J Steroid Biochem Mol Biol. 2003; 86: 225-230.
Smith G. CCK hypothesis: Proof and problems. Appetite. 1991; 17: 76.
Sundararaman PG, Sridhar GR, Sujatha V, Anita V. Serum chromium levels in gestational diabetes mellitus. Indian J Endocrinol Metab.2012; 1: 70–73.
Tiano J, Delghingaro-Augusto V, Le May C, Liu S, Kaw MK, Khuder SS, Prentki M. Estrogen receptor activation reduces lipid synthesis in pancreatic islets and prevents β cell failure in rodent models of type 2 diabetes. J Clin Invest. 2011; 121: 3331-3342.
Tuzcu M, Sahin N, Orhan C, Agca CA, Akdemir F, Tuzcu Z. Impact of chromium histidinate on high fat diet induced obesity in rats. Nutr Metab (Lond). 2011; 8: 28.
Wade G. Some effects of ovarian hormones on food intake and body weight in female rats. J Comp Physiol Psychol. 1975; 88: 183-193.
Wang Yao M. Effects of chromium picolinate on glucose uptake in insulin-resistant 3T3-L1 adipocytes involve activation of p38 MAPK. J Nutr Biochem. 2009; 20: 982-991.
Wenk C, Gebert S, Pfirter HP. Chromium supplements in the feed for growing pigs: influence on growth and meat quality. Arch Anim Nutr; 1995, 48: 71-81.
Wild S, Roglic G, Green A. Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care. 2004; 27: 1047-1053.
Wong WP, Tiano JP, Liu S, Hewitt SC, Dalle S, Mauvais-Jarvis F. Extranuclear estrogen receptoralpha stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proc Natl Acad Sci USA. 2010; 107: 13057–13062.
Wysocka E, Cymerys M, Mielcarz G, Bryl W, Dzięgielewska S, Torliński L. The way of serum chromium utilization may contribute to cardiovascular risk factors in centrally obese persons. Arch Med Sci. 2011; 7: 257–263.
Yamamoto A, Wada O, Manabe S. Evidence that chromium is an essential factor for biological activity of low-molecular-weight, chromium-binding substance. Biochem Biophys Res Commun. 1989; 163: 189–193.
Yashida M, Da Silva Faria A, José Caldeira E. Estrogen and insulin replacement therapy modulates the expression of insulin-like growth factor-1 receptors in the salivary glands of diabetic mice. Anat Rec. 2011; 294: 1930-1938.
Yazaki Y, Faridi Z, Ma Y, Ali A, Northrup V, Njike V, Katz D. A pilot study of chromium picolinate for weight loss. The Journal of Alternative and Complementary Medicine. 2010; 16: 291-299.
Zhu M, Noma Y, Mizuno A, Sano T, Shima K. Poor capacity for proliferation of pancreatic -cells in Otsuka-Long-Evans-Tokushima fatty rat: a model of spontaneous NIDDM. Diabetes.1996; 45: 941–946
Zima T, Mestek O, Tesar V, Tesarova P, Nemecek K, Zak A, Zeman M. Chromium levels in patients with internal diseases. IUBMB Life. 1998; 46: 365-374.
Zini E, Hafner M, Osto M. Predictors of clinical remission in cats with diabetes mellitus. J Vet Intern Med. 2010; 24: 1314-1321.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top