(3.236.214.19) 您好!臺灣時間:2021/05/07 11:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:洪志豪
研究生(外文):Zhi-Hao Hong
論文名稱:在正交分頻多工系統中結合疊代與修改型樹狀結構之部分傳輸序列來降低峰均功率比值
論文名稱(外文):Combination of Iteration and Modified Tree Structure with Partial Transmit Sequence for PAPR Reduction in OFDM System
指導教授:陳後守
指導教授(外文):Hou-shou Chen
口試委員:楊谷章梁新潁
口試委員(外文):Guu-Chang YangHsin-Ying Liang
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:63
中文關鍵詞:正交分頻多工峰均功率比值
外文關鍵詞:OFDMPAPR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:43
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們提出三種正交分頻多工系統結合具有低複雜度之部分傳輸序列的方法,來降低正交分頻多工系統的峰均功率比。在部分傳輸序列中,隨著子區塊的增加,降低峰均功率比的效果也越好,但複雜度則卻是呈現指數成長。

第一種降低複雜度的方法為透過疊代的方式,由前次得到的資訊來得到更好的效果,故可以用較少的子區塊來得到相同的效果;第二種方法則是結合了修改型樹狀結構的部分傳輸序列,使得複雜度比樹狀結構更為降低;最後一種方法,則是結合了法諾演算法使得並列型式的樹狀結構改為串列型式的樹狀結構,並加入臨界值判斷,使得複雜度下降,且降低正交分頻多工系統的峰均功率比。


In this paper, we proposed three methods of orthogonal frequency division multiplexing (OFDM) system combined partial transmit sequence (PTS) with low complexity. In the PTS, as sub-blocks increase, the performance of reducing peak-to-average power ratio (PAPR) is getting better, but complexity grow exponentially.

The first method is to reduce the complexity of PTS by iteration, and uses the information obtained from last time to get better performance, so it can use less sub-blocks to get the same performance as PTS .The second method is to reduce much complexity by modified tree structure than RC-PTS. The last is to reduce complexity of tree structure by Fano algorithm, and changes the parallel form of tree structure into series form. In this method, we also add the threshold to let complexity lower.


Chapter 1 前言………………1
Chapter 2 簡介………………3
  2.1 正交分頻多工系統………………3
  2.2 峰均功率比值………………7
  2.3 部分傳輸序列………………10
  2.4 樹狀結構………………18
Chapter 3 結合疊代型及修改型樹狀結構之PTS………………25
  3.1 疊代型部分傳輸序列………………25
  3.2 修改型樹狀結構………………31
  3.3 結合法諾演算法與樹狀結構之部分傳輸序列………………34
3.3.1 ZJ 演算法………………34
3.3.2 法諾演算法(Fano Algorithm)………………39
3.3.3 修改型法諾演算法與樹狀結構結合之部分傳輸序列………………41
Chapter 4 模擬結果與討論………………48
  4.1 疊代型部分傳輸序列………………49
  4.2 修改型樹狀結構………………52
  4.3 結合法諾演算法與樹狀結構………………57
Chapter 5 結論………………60
參考文獻 ………………61



[1].S. H. Han and J. H. Siu, “An Overview of Peak-to-Average Power Ratio Reduction on Technique for Multicarrier Transmission,” IEEE Wireless Commun., vol. 12, issue. 2, pp. 56-65, Apr. 2005.


[2].H. B. Jeon, J. S. No, “A Low-Complexity SLM Scheme Using Additive Mapping Sequences for PAPR Reduction of OFDM Signals”, IEEE Trans. Broadcast., vol. 57, no. 4, pp. 866-875 , Dec. 2011.


[3].C. P. Li, S. H. Wang, and C. L. Wang, “Novel Low-Complexity SLM Schemes for PAPR Reduction in OFDM Systems”, IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2916-2921, May 2010.


[4].L. Wang and J. Liu, “PAPR Reduction of OFDM Signals by PTS With Grouping and Recursive Phase Weighting Methods”, IEEE Trans. Broadcast., vol. 57, no. 2, pp. 299-306, Jun. 2011.


[5].L. Yang, K. K. Soo, S. Q. Li, and Y. M. Siu, “PAPR Reduction Using Low Complexity PTS to Construct of OFDM Signals Without Side Information”, IEEE Trans. Broadcast., vol. 57, no. 2, pp. 284-290 , Jun. 2011.



[6].L. Yang, R. S. Chen, Y. M. Siu, and K. K. Soo, “PAPR Reduction of an OFDM Signal by Use of PTS with Low Computational Complexity”, IEEE Trans. Broadcast., vol. 52, no. 1, pp. 83-86, Mar. 2006.


[7].S. J. Ku, C. L. Wang and C. H. Chen, “A Reduced-Complexity PTS-Based PAPR Reduction Scheme for OFDM Systems”, IEEE Trans. Wireless Comm., vol. 9, no. 8, pp. 2455-2460, Aug. 2010.


[8].Li Li and D. Qu, “Joint Decoding of LDPC Code and Phase Factors for OFDM Systems With PTS PAPR Reduction”, IEEE Trans. Vehicular Tech., vol. 62, no. 1, pp. 444-449, Jan. 2013


[9].D. W. Lim, S. J. Heo, J. S. No, and H. Chung, “A New PTS OFDM Scheme with Low Complexity for PAPR Reduction”, IEEE Trans. Broadcast., vol. 52, no. 1, pp. 77-82, Mar. 2006.


[10].Shu Lin et Daniel J. Costello, “Suboptimum Decoding of Convolutional Codes,” Error Control Coding, 2th ed., Pearson-Prentice Hall, 2004, ch. 13, sec. 1-2, pp. 606-626.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔