|
[1]Z. Rao, S. Wang, “A review of power battery thermal energy management,” Renewable and Sustainable Energy Reviews, Vol. 15, No. 9, pp. 4554-4571, 2011. [2]H. Maleki, A. Shamsuri, “Thermal analysis and modeling of a notebook computer battery,” Journal of Power Sources, Vol. 115, No. 1, pp. 131-136, 2003. [3]R. Spotnitz, J. Weaver, G. Yeduvaka, D. H. Doughty, E. P. Roth, “Simulation of abuse tolerance of lithium-ion battery packs,” Journal of Power Sources, Vol. 163, No. 2, pp. 1080-1086, 2007. [4]S. Khateeb, M. Farid, J. Selman, S. Hallaj, “Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter,” Journal of Power Sources, Vol. 128, No. 2, pp. 292-307, 2007. [5]R. Kizilel, A. Lateef, R. Sabbaha, M.M. Faridb, J.R. Selmana, S. Hallaj , “Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature,” Journal of Power Sources, Vol. 183, No. 1, pp. 370-375, 2008. [6]R. Kizilel, R. Sabbaha, J. Selmana, S. Hallaj, “An alternative cooling system to enhance the safety of Li-ion battery packs,” Journal of Power Sources, Vol. 194, No. 2, pp. 1105-1112, 2009. [7]T. Kousksou, A. Jamil, T. Rhafiki, Y. Zeraouli , “An alternative cooling system to enhance the safety of Li-ion battery packs,” Solar Energy Materials & Solar Cells, Vol. 94, No. 12, pp. 2158-2165, 2010. [8]S. Kalnæs, B. Jelle, “Phase change materials and products for building applications: A state-of-the-art review and future research opportunities,” Energy and Buildings, vol. 94, pp. 150-176, 2015. [9]Z. Zhang, X. Fang, “Study on paraffin/expanded graphite composite phase change thermal energy storage material,” Energy Conversion and Management, vol. 31, No. 10, pp. 814-823, 2006. [10]A. Sari, A. Karaipekli, “Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material,” Applied Thermal Engineering, Vol. 27, No. 8-9, pp. 1271-1277, 2007. [11]N. Şahan, M. Fois, H. Paksoy, “Improving thermal conductivity phase change materials—A study of paraffin naNomagnetite composites,” Solar Energy Materials & Solar Cells, Vol. 137, pp. 61-67, 2014. [12]Z. Huang, X. Gao, T. Xu, Y. Fang, Z. Zhang, “Thermal property measurement and heat storage analysis of LiNO3/KCl–expanded graphite composite phase change material,” Applied Energy, Vol. 115, pp. 265-271, 2014. [13]R. K. Sharma, P. Ganesan, V.V. Tyagi, H.S.C. Metselaar, S.C. Sandaran, “Developments in organic solid–liquid phase change materials and their applications in thermal energy storage,” Energy Conversion and Management, Vol. 95, pp. 193-228, 2015. [14]N. Soares, J. J. Costa, A. R. Gaspar, P. Santos, “Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency,” Energy and Buildings, Vol. 59, pp. 82-103, 2013. [15]D. Zhou, C.Y. Zhao, Y. Tian, “Review on thermal energy storage with phase change materials (PCMs) in building applications,” Applied Energy, Vol. 92, pp. 593-605, 2012. [16]A. Sari, “Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties,” Energy Conversion and Management, Vol. 45, No. 13-14, pp. 2033-2042, 2004. [17]P. Zhang, Y. Hu, , L. Song, J. Ni, W. Xing, J. Wang, “Effect of expanded graphite on properties of high-density polyethylene/paraffin composite with intumescent flame retardant as a shape-stabilized phase change material,” Solar Energy Materials & Solar Cells, Vol. 94, No.2, pp. 306-365, 2010. [18]W. Cheng, R. Zhang, K. Xie, N. Liu, J. Wang, “Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: Preparation and thermal properties,” Solar Energy Materials & Solar Cells, Vol. 94, No. 10, pp. 1636-1642, 2010. [19]M. Lachheb, M. Karkri , F. Albouchi, S. Nasrallah, M. Fois P. Sobolciak, “Thermal properties measurement and heat storage analysis of paraffin/graphite composite phase change material,” Composites: Part B, Vol. 66, pp. 518-525, 2014. [20]A. Sharma, V. V. Tyagi, C. R. Chen, D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renewable and Sustainable Energy Reviews, Vol. 13, No. 2, pp. 318-345, 2009. [21]Y. Cai, Q. Wei, F. Huang, S. Lin, F. Chen, W. Gao, “Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites,” Renewable Energy, Vol. 34, No. 10, pp. 2117-2123, 2009. [22]M. Li, Z. Wub, J. Tan, “Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method,” Applied Energy, Vol. 92, pp. 456-461, 2012. [23]W. Mhike, W.W. Focke, J.P. Mofokeng, A.S. Luyt, “Thermally conductive phase-change materials for energy storage based on low-density polyethylene, soft Fischer–Tropsch wax and graphite,” Thermochimica Acta, Vol. 527, pp. 75-82, 2012. [24]O. Sanusi, R. Warzoha, A. Fleischer, “Energy storage and solidification of paraffin phase change material embedded with graphite nanofibers,” International Journal of Heat and Mass Transfer, Vol. 54, No. 19-20, pp. 4429-4436, 2011. [25]Z. Zhang, N. Zhang, J. Peng, X. Fang, X. Gao, Y. Fang, “Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material,” Applied Energy, Vol. 91, No. 1, pp. 426-431, 2012. [26]M. M. Sedeh, J.M. Khodadadi, “Thermal conductivity improvement of phase change materials/graphite foam composites,” Carbon 60, Vol. 60, pp. 117-128, 2013. [27]L. Xia, P. Zhang, R. Z. Wang i, “Preparation and thermal characterization of expanded graphite/paraffin composite phase change material,” Carbon 48, Vol. 48, No. 9, pp. 2537-2548, 2010. [28]X. Xiao, P. Zhang, “Morphologies and thermal characterization of paraffin/carbon foam composite phase change material,” Solar Energy Materials & Solar Cells, Vol. 117, pp. 451-461, 2013. [29]X. Xiao, P. Zhang, M. Li, “Preparation and thermal characterization of paraffin/metal foam composite phase change material,” Applied Energy, Vol. 112, pp. 1357-1366, 2013. [30]N. Şahan, M. Fois, H. Paksoy, “Improving thermal conductivity phase change materials—A study of paraffin nanomagnetite composites,” Solar Energy Materials & Solar Cells, Vol. 137, pp. 61-67, 2015. [31]P. Zhang, Y. Hu, L. Song, J. Ni, W. Xing, J. Wang, “Effect of expanded graphite on properties of high-density polyethylene/ paraffin composite with intumescent flame retardant as a shape-stabilized phase change material,” Solar Energy Materials & Solar Cells, Vol. 94, No. 2, pp. 360-365, 2015. [32]W. Cheng, R. Zhang, K. Xie, N. Liu, J. Wang, “Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: Preparation and thermal properties,” Solar Energy Materials & Solar Cells, Vol. 94, No. 10, pp. 1636-1642, 2010. [33]R. Ehid, A. Fleischer, “Development and characterization of paraffin-based shape stabilized energy storage materials,” Energy Conversion and Management, Vol. 53, No. 1, pp. 84-91, 2012.
|