跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 19:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝宜隆
研究生(外文):Yi-Lung Hsieh
論文名稱:石蠟與膨脹石墨於鋰電池組的熱管理研究
論文名稱(外文):A study of thermal management to lithium battery set using paraffin and exfoliated graphite
指導教授:楊錫杭
指導教授(外文):Hsiharng Yang
口試委員:簡瑞與潘吉祥
口試委員(外文):Rei-Yu CheinChi-Hshiang Pan
口試日期:2015-10-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:48
中文關鍵詞:石蠟膨脹石墨相變材料鋰電池密煉機
外文關鍵詞:paraffinexfoliated graphitephase change materiallithium-ion batteryintensive mixer
相關次數:
  • 被引用被引用:1
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目標於製作石蠟與膨脹石墨混合的相變材料,適用於鋰電池組的熱管理。當鋰電池組放電溫度升高的情況下,可將鋰電池的溫度熱導出與有效降低電池表面溫度。使用以製作出不同比例65:35、70:30、75:25、80:20、85:15的石蠟與膨脹石墨,與密煉機以質量比例75:25比較,取最佳結果,製作出實體相變材料,量測出相變材料的熱傳導係數為10.65(W/m.k),比原本石臘的熱傳導係數為0.22(W/m.k),多出48倍以上,大幅提升石臘本身熱傳導係數。將鋰電池組放入相變材料內,使用紅外線熱像儀,觀看表面溫度變化情形。利用石蠟與膨脹石墨的相變材料,大幅的降低鋰電池組整體的表面溫度,降低的溫度約為11.2°C,得以將鋰電池組之表面溫度控制在40°C以內,有效進行電池組的熱管理。

This study aims to utilize paraffin and exfoliated graphite to fabricate a phase change material (PCM) for thermal management in the Li-ion battery set. When lithium batteries discharge with a high temperature, the PCM is capable to conduct their heat and reduce their surface temperature. The melting mix method was used to fabricate the PCM with the ratio of 65:35, 70:30, 75:25, 80:20, 85:15, and analyze the trend of latent heat by Differential Scanning Calorimeter. Then, the intensive mixer was used to fabricate the PCM with the ratio 75:25, and measured its thermal conductivity of 10.65(W/m.k) which was 48 times greater than the original paraffin of 0.22(W/m.k). It is significantly increased the PCM thermal conductivity than paraffin. The lithium batteries were placed inside the PCM and observed their surface temperature by the infrared thermal video system. The results showed that the PCM can reduce the battery set surface temperature about 11.2°C. The PCM is effectively to control the battery surface temperature under 40°C as a thermal management material for the Li-ion battery set.

摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究目標 2
第二章 文獻回顧 3
2.1相變材料種類 3
2.2有機無機共晶的介紹 4
2.2.1有機相變材料 4
2.2.2無機相變材料 7
2.2.3共晶相變材料 8
2.3 有機無機共晶的優缺說明 10
2.4相變材料製備方法 11
2.4.1熔融共混法 11
2.4.2擠出法 12
2.4.3吸附法 13
2.4.4壓製法 15
2.5材料挑選 19
第三章 實驗設計與規劃 21
3.1 實驗架構與材料設備 21
3.2材料石蠟與石墨 23
3.3石蠟與膨脹石墨等比例的製備 24
3.3.1 熔融共混法 24
3.3.2 密煉機 25
3.4 FE-SEM分析(場發射掃描式電子顯微鏡) 28
3.5 DSC分析(調幅式示差掃描分析儀) 29
3.6接合壓模機製作 30
3.7熱傳導分析儀 31
3.8熱壓機製作 32
3.9 PCM加工製作 (相變材料) 33
3.10用紅外線熱像儀測試 35
第四章 結果與討論 38
4.1石蠟與膨脹石墨的微結構 38
4.2石蠟與膨脹石墨的熱特性 39
4.3石蠟與膨脹石墨的熱傳導係數 41
4.4石蠟與膨脹石墨的PCM紅外線熱像儀測試 41
第五章結論與未來研究方向 45
5.1 結論 45
5.2 未來研究方向 45
參考文獻 46


[1]Z. Rao, S. Wang, “A review of power battery thermal energy management,” Renewable and Sustainable Energy Reviews, Vol. 15, No. 9, pp. 4554-4571, 2011.
[2]H. Maleki, A. Shamsuri, “Thermal analysis and modeling of a notebook computer battery,” Journal of Power Sources, Vol. 115, No. 1, pp. 131-136, 2003.
[3]R. Spotnitz, J. Weaver, G. Yeduvaka, D. H. Doughty, E. P. Roth, “Simulation of abuse tolerance of lithium-ion battery packs,” Journal of Power Sources, Vol. 163, No. 2, pp. 1080-1086, 2007.
[4]S. Khateeb, M. Farid, J. Selman, S. Hallaj, “Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter,” Journal of Power Sources, Vol. 128, No. 2, pp. 292-307, 2007.
[5]R. Kizilel, A. Lateef, R. Sabbaha, M.M. Faridb, J.R. Selmana, S. Hallaj , “Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature,” Journal of Power Sources, Vol. 183, No. 1, pp. 370-375, 2008.
[6]R. Kizilel, R. Sabbaha, J. Selmana, S. Hallaj, “An alternative cooling system to enhance the safety of Li-ion battery packs,” Journal of Power Sources, Vol. 194, No. 2, pp. 1105-1112, 2009.
[7]T. Kousksou, A. Jamil, T. Rhafiki, Y. Zeraouli , “An alternative cooling system to enhance the safety of Li-ion battery packs,” Solar Energy Materials & Solar Cells, Vol. 94, No. 12, pp. 2158-2165, 2010.
[8]S. Kalnæs, B. Jelle, “Phase change materials and products for building applications: A state-of-the-art review and future research opportunities,” Energy and Buildings, vol. 94, pp. 150-176, 2015.
[9]Z. Zhang, X. Fang, “Study on paraffin/expanded graphite composite phase change thermal energy storage material,” Energy Conversion and Management, vol. 31, No. 10, pp. 814-823, 2006.
[10]A. Sari, A. Karaipekli, “Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material,” Applied Thermal Engineering, Vol. 27, No. 8-9, pp. 1271-1277, 2007.
[11]N. Şahan, M. Fois, H. Paksoy, “Improving thermal conductivity phase change materials—A study of paraffin naNomagnetite composites,” Solar Energy Materials & Solar Cells, Vol. 137, pp. 61-67, 2014.
[12]Z. Huang, X. Gao, T. Xu, Y. Fang, Z. Zhang, “Thermal property measurement and heat storage analysis of LiNO3/KCl–expanded graphite composite phase change material,” Applied Energy, Vol. 115, pp. 265-271, 2014.
[13]R. K. Sharma, P. Ganesan, V.V. Tyagi, H.S.C. Metselaar, S.C. Sandaran, “Developments in organic solid–liquid phase change materials and their applications in thermal energy storage,” Energy Conversion and Management, Vol. 95, pp. 193-228, 2015.
[14]N. Soares, J. J. Costa, A. R. Gaspar, P. Santos, “Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency,” Energy and Buildings, Vol. 59, pp. 82-103, 2013.
[15]D. Zhou, C.Y. Zhao, Y. Tian, “Review on thermal energy storage with phase change materials (PCMs) in building applications,” Applied Energy, Vol. 92, pp. 593-605, 2012.
[16]A. Sari, “Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties,” Energy Conversion and Management, Vol. 45, No. 13-14, pp. 2033-2042, 2004.
[17]P. Zhang, Y. Hu, , L. Song, J. Ni, W. Xing, J. Wang, “Effect of expanded graphite on properties of high-density polyethylene/paraffin composite with intumescent flame retardant as a shape-stabilized phase change material,” Solar Energy Materials & Solar Cells, Vol. 94, No.2, pp. 306-365, 2010.
[18]W. Cheng, R. Zhang, K. Xie, N. Liu, J. Wang, “Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: Preparation and thermal properties,” Solar Energy Materials & Solar Cells, Vol. 94, No. 10, pp. 1636-1642, 2010.
[19]M. Lachheb, M. Karkri , F. Albouchi, S. Nasrallah, M. Fois P. Sobolciak, “Thermal properties measurement and heat storage analysis of paraffin/graphite composite phase change material,” Composites: Part B, Vol. 66, pp. 518-525, 2014.
[20]A. Sharma, V. V. Tyagi, C. R. Chen, D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renewable and Sustainable Energy Reviews, Vol. 13, No. 2, pp. 318-345, 2009.
[21]Y. Cai, Q. Wei, F. Huang, S. Lin, F. Chen, W. Gao, “Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites,” Renewable Energy, Vol. 34, No. 10, pp. 2117-2123, 2009.
[22]M. Li, Z. Wub, J. Tan, “Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method,” Applied Energy, Vol. 92, pp. 456-461, 2012.
[23]W. Mhike, W.W. Focke, J.P. Mofokeng, A.S. Luyt, “Thermally conductive phase-change materials for energy storage based on low-density polyethylene, soft Fischer–Tropsch wax and graphite,” Thermochimica Acta, Vol. 527, pp. 75-82, 2012.
[24]O. Sanusi, R. Warzoha, A. Fleischer, “Energy storage and solidification of paraffin phase change material embedded with graphite nanofibers,” International Journal of Heat and Mass Transfer, Vol. 54, No. 19-20, pp. 4429-4436, 2011.
[25]Z. Zhang, N. Zhang, J. Peng, X. Fang, X. Gao, Y. Fang, “Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material,” Applied Energy, Vol. 91, No. 1, pp. 426-431, 2012.
[26]M. M. Sedeh, J.M. Khodadadi, “Thermal conductivity improvement of phase change materials/graphite foam composites,” Carbon 60, Vol. 60, pp. 117-128, 2013.
[27]L. Xia, P. Zhang, R. Z. Wang i, “Preparation and thermal characterization of expanded graphite/paraffin composite phase change material,” Carbon 48, Vol. 48, No. 9, pp. 2537-2548, 2010.
[28]X. Xiao, P. Zhang, “Morphologies and thermal characterization of paraffin/carbon foam composite phase change material,” Solar Energy Materials & Solar Cells, Vol. 117, pp. 451-461, 2013.
[29]X. Xiao, P. Zhang, M. Li, “Preparation and thermal characterization of paraffin/metal foam composite phase change material,” Applied Energy, Vol. 112, pp. 1357-1366, 2013.
[30]N. Şahan, M. Fois, H. Paksoy, “Improving thermal conductivity phase change materials—A study of paraffin nanomagnetite composites,” Solar Energy Materials & Solar Cells, Vol. 137, pp. 61-67, 2015.
[31]P. Zhang, Y. Hu, L. Song, J. Ni, W. Xing, J. Wang, “Effect of expanded graphite on properties of high-density polyethylene/ paraffin composite with intumescent flame retardant as a shape-stabilized phase change material,” Solar Energy Materials & Solar Cells, Vol. 94, No. 2, pp. 360-365, 2015.
[32]W. Cheng, R. Zhang, K. Xie, N. Liu, J. Wang, “Heat conduction enhanced shape-stabilized paraffin/HDPE composite PCMs by graphite addition: Preparation and thermal properties,” Solar Energy Materials & Solar Cells, Vol. 94, No. 10, pp. 1636-1642, 2010.
[33]R. Ehid, A. Fleischer, “Development and characterization of paraffin-based shape stabilized energy storage materials,” Energy Conversion and Management, Vol. 53, No. 1, pp. 84-91, 2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top