(3.238.130.97) 您好!臺灣時間:2021/05/10 12:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱祐廷
研究生(外文):Yu-Ting Chu
論文名稱:重力場流分離紅血球之數值模擬研究
論文名稱(外文):Numerical simulation of erythrocyte separation using gravitational field flow
指導教授:楊錫杭
指導教授(外文):Hsi-Harng Yang
口試委員:張復瑜潘正堂
口試委員(外文):Fu-Yu ChangCheng-Tang Pan
口試日期:2016-06-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:58
中文關鍵詞:重力場流分離微流道紅血球
外文關鍵詞:Gravityfield flow fractionationmicrofluidic channelsred blood cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:97
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是以ANSYS模擬軟體進行重力場流分離之系統模擬,利用均勻重力場,模擬血球受重力作用後產生之運動現象。根據重力與其血球所受引力平衡條件,再以數值模擬方法計算出血球移動路徑。由ANSYS CFX軟體實際模擬分析可得知於一大氣壓下,在正負10%的情況下對於流場內之流體流速與流體壓力並無太大差異,表示於10%情況下大氣壓力並不會對流場造成影響。且藉由ANSYS Fluent軟體進行模擬得到粒子完整行徑路徑,於模擬結果中得知8μm大小之粒子可分離至外側分離流道並於最後蒐集區排出,9μm大小之粒子則維持流體運動於最終蒐集區中保存,該模擬結果確立重力場流分離法之可行性。

This research aims to simulate a processing of fractionate particles through gravitational field using the ANSYS simulation software. Base on the gravitational equilibrium conditions of the particles and gravitational field as the parameters, then derives the particle paths through numerical simulations. After the actual analog measurements from this study, there is no difference between the flow rate and the pressure under +/-10% atm (atomsphere) condition. According to the simulation results, the particles with the size 8 μm can be separated to the outside channel and discharged from the collecting area. The particles with the size 9 μm can stay within fluid motion and can be collected in the final collection area for preservation. Through the analog measurements by the software-ANSYS-Fluent and the complete particle flowing paths by analog measurements determined, directly the feasibility of the Gravity -Flow Fractionation can be.

摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 論文架構 3
第二章 文獻回顧 4
2.1 血液介紹 4
2.1.1血漿 4
2.1.2血球 5
2.2 雷諾數與黏度 8
2.2.1 雷諾數 8
2.2.2 黏度 10
2.3 牛頓流體與非牛頓流體 11
2.4 場流效應 11
2.5 微結構應用於血液分離 12
2.6 結語 17
第三章 理論模式之建立 18
3.1常見之計算流體力學(CFD)軟體 18
3.2常見之紊流模式 19
3.3 數值分析 21
3.4 統御方程式 21
3.5 運算符號 22
3.6 浮力效應 24
3.7 多孔隙介質 25
3.8 紊流模式 26
3.9 渦流黏滯係數紊流模式 27
3.10 k-Epsilon模式 29
3.11渦度(vorticity)之計算 30
3.12微流道設計理念 30
第四章 重力場流分離法之數值模擬 32
4.1流場模組 33
4.1.1流體之質量守恆 33
4.1.2流體之動量守恆 33
4.2粒子模組 34
4.3不同重力場下之數值模擬 34
4.3.1模擬收斂圖之比較 35
4.3.2不同大氣壓下之流速模擬分析圖比較 35
4.3.3不同大氣壓下之壓力模擬分析圖比較 36
4.4粒子行徑模擬 48
第五章 結論與未來展望 54
5.1結論 54
5.2未來展望 54
第六章 參考文獻 55


[1] A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total analysis aystems: a novel concept for chemical sensing,” Sensors and Actuators B: Chemical, vol. 1, pp. 244-248, 1990.
[2] N. Vandelli, D. Wroblewski, M. Velonis, and T. Bifano, “Development of a MEMS microvalve array for fluid flow control,” Journal of Microelectromechanical Systems, vol. 7, no. 4, pp. 395-403, 1998.
[3] K. S. Yun, I. J. Cho, J. U. Bu, C. J. Kim, and E. Yoon, “A surface-tension driven micropump for low-voltage and low-power operations,” Journal of Microelectromechanical Systems, vol. 11, no. 5, pp. 454-461, 2002.
[4] Z.Yang, S. Matsumoto, H. Goto, M. Matsumoto, and R. Maeda, “Ultrasonic micromixer for microfluidic system,” Sensors and Actuators A: Physical, vol. 93, pp. 266-272, 2001.
[5] S. Lai, S. Wang, J. Luo, L. J. Lee, S. T. Yang, and M. J. Madou, “Design of a Compact disk-like microfluidic platform for enzyme-linked immunosorbent assay,” Analytical Chemistry, vol. 76, no. 7, pp.1832-1837, 2004.
[6] B. S. Harald, “Flow cytometer for measurement of the light scattering of viral and other submicroscope particles,” Cytometry Part A, vol. 57A, pp.94-99, 2004.
[7] M. A. Clain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow cytometer of escherichia coli on microfluidic devices,” Analytical Chemistry, vol. 73, pp. 5334-5338, 2001.
[8] A. Wolff, I. R. P. Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, P. Kutter, and P. Telleman, “Integrating advanced functionality in a micro fabricated high-throughput fluorescent-activated cell sorter,” Lab on a Chip, vol. 3, pp. 22-27, 2003.
[9] P. S. Dittrich and P. Schwille, “An integrated microfluidic system for reaction, high-sensitivity detection, and sorting fluorescent cells and particles,” Analytical Chemistry, vol. 75, pp. 5767-5774, 2003.
[10] C. R. Poulsen, C. T. Cilbertson, S. C. Jacobson, and J. M. Ramsey, “Static and dynamic acute cytotoxicity assays on microfluidic devices,” Analytical Chemistry, vol. 77, pp. 667-672, 2005.
[11] L. Bousse , S. Mouradian , A. Minalla , K .Williams , and R. Dubrow, “ Protein sizing on a microchip,” Analytical Chemistry, vol. 73, no. 6, pp.1207-1212, 2001.
[12] D. P. Daniel Figeys, “Proteomics on a chip promising developments. electrophoresis, ” Electrophoresis , vol. 22, no. 2, pp. 208-216 , 2001.
[13] M. Krishnan, N. Agrawal and M. A. Burns in “Miniaturized natural convection systems,” Analytical Chemistry, vol. 76, no.21, pp. 6254-6265, 2004.
[14] M. A. Burns, “ An integrated nanoliter DNA analysis device,” Science, vol. 282, no. 5388, pp. 484-487, 1998.
[15] J. Khandurina, “Integrated system for rapid PCR-based DNA analysis in microfluidic devices,” Analytical Chemistry, vol.72, no.13, pp. 2995-3000, 2000.
[16] C. J. Huang, “Integrated microfluidic systems for automatic glucose sensing and insulin injection,” Sensors and Actuators B: Chemical, vol.
122, no. 2, pp. 461-468, 2007.
[17] B. H. Weigl, R. L. Bardell, and C. R. Cabrera, “Lab-on-a-chip for drug development,” Advanced Drug Delivery Reviews, vol. 55, no. 3, pp.
349-377, 2003.
[18] C. Blattert, R. Jurischka, I. Tahhan, A. Schoth, P. Kerth, and W. Menz, “Separation of blood in microchannel bends,” Proceedings of the 26th Annual International Conference of the IEEE EMBS, CA, USA, September 1-5, 2004.
[19] H. Arjomandi, S. S. Barcelona, S. L. Gallocher, and M. Vallejo, “Biofluid dynamics of the human circulatory system,” Congress on Biofluid Dynamics of Human Body Systems at Biomedical Engineering, Miami , FL. 2003.
[20]吳俊忠,李密模,王聖帆等, 2012, ”醫學分子檢驗”,二版,五南圖書出版,台北
[21]劉麗芬,1989,認識醫學檢驗, ISBN:9570800410,初版,民生報社,台北
[22]廖志峰,介電泳力微流晶片用於分離血漿與血球之研究發展,國立成功大學航空太空學系碩士論文,2011
[23]各大醫院專科醫師合著,家庭醫學百科全書, ISBN:9787811366549,健康世界出版社,台北
[24] T. A. Duncombe, A. M. Tentori and A. E. Herr “Microfluidics: reframing biological enquiry ,” Technilogies and Techniques, 554, September, Vol 16, pp. 554-567, 2015.
[25] S. H. Maron and J. B. Lando, ”Fundamental physical chemistry,” Macmillan Publishing Co., Inc. 1976.
[26] D. G. Thomas, “Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles,” J. Colloid Sci., 20 (3): 267,1965.
[27] J.C. Giddings, F.J. Yang, and M.N. Myers, "Flow field-flow fractionation: a versatile new separation method,” Science, Vol. 193, Issue 4259, pp. 1244-1245,1976.
[28] X. Chen, D. F. Cui, C. C. Liu, H. Li, “Microfluidic chip for blood cell separation and collection based on crossflow filtration,” Sensors and Actuators :B, 130, 216–221, 2008.
[29] S. Yang, A. Undar, J. D. Zahn, “A microfluidic device for continuous, real time blood plasma separation,” Lab on a Chip, vol. 6, pp. 871-880, 2006.
[30] C. Blattert, R. Jurischka, I. A. Schoth, P. Kerth, and W. Menz, “ Separation of blood in microchannel bends,” Proceedings of the 26th Annual International Conference of the IEEE EMBS, CA, USA, September 1-5, 2004.
[31] J. Park, K. Cho, C. Chung, D. C. Han, and J. K. Chang, “Continuous plasma separation form whole blood using microchannel geometry,” IEEE Microtechnologies in Medicine and Medicine and Biology, Hawaii, May 12-15, 2005.
[32] P. Sethu, A Sin, M. T. Toner, “ Microfluidic diffusive filter for apheresis(leukapheresis),” Lab on a Chip, vol. 6, pp. 83-89, 2006.
[33] R. Zhong, N. Wu, and Y. Liu, “ Microfluidic human blood plasma separation for lab on chip based heavy metal detections,” ECS Transactions, vol. 41, no. 38, pp. 11-16, 2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔