跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/15 06:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黎氏鍾
研究生(外文):Thi Chung Le
論文名稱:一個雙穩態能量擷取器的設計與特性探討
論文名稱(外文):Design and Characterization of a Bistable Energy Harvester
指導教授:王東安
指導教授(外文):Dung-An Wang
口試委員:陳重德吳天堯
口試委員(外文):Chung-De ChenTian-Yau Wu
口試日期:2016-07-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:44
中文關鍵詞:双穩態機構有限元素分析振動能量攫取器電磁的寬頻帶的
外文關鍵詞:bistable mechanismfinite element analysisvibratory energy harvesterelectromagnecticwideband
相關次數:
  • 被引用被引用:0
  • 點閱點閱:91
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Nonlinear characteristics of bistable oscillators can be exploited to increase bandwidth of energy harvesting devices. Electromagnetic energy conversion has the advantages of high current and high power output for vibratory energy harvesting. In this thesis, a compliant bistable mechanism (BM) for wideband vibratory energy harvesting is developed. The BM has one unstable and two stable equilibrium positions. When the amplitude and/or frequency of an external excitation reach certain threshold values, the BM exhibits snap-through behaviors, typically seen in bistable systems. The oscillator with snap-through phenomenon has larger vibration amplitude and thus induces more electrical energy through the electromagnetic conversion than its linear mono-stable counterpart. Finite element analyses are adopted to obtain the force-displacement relation of the BM. An analytical model is developed to calculate the time response and frequency response of the electromagnetic energy harvester. Experiments are carried out to validate the efficiency of energy harvesting device with the nonlinear bistable oscillator.

ABSTRACT i
ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS iii
LIST OF FIGURE AND TABLE iv
CHAPTER 1: INTRODUCTION 1
CHAPTER 2: MECHANICAL ANALYSES 4
2.1 Design 4
2.2 Analysis 9
2.3 Vibration analysis. 11
2.4 Result 14
CHAPTER 3: MECHANICAL EXPERIMENT 16
3.1 Fabrication 16
3.2 Testing 21
3.3 Vibration measurement 26
3.4 Result 27
CHAPTER 4 ELECTROMECHANICAL ANALYSIS 29
4.1 Model 29
4.2 Result 34
CHAPTER 5: ELECTROMECHANICAL EXPERIMENTS 36
5.1 Fabrication 36
5.2 Experiment 39
5.3 Result. 40
CHAPTER 6: CONCLUSISONS 42
REFERENCES 43



[1] H. Vocca, I. Neri, F. Travasso, L. Gammaitoni, Kinetic energy harvesting with bistable oscillators, Appl. Energy 97 (2012) 771–776.
[2] R.L. Harne, K.W. Wang, A review of the recent research on vibration energy harvesting via bistable systems, Smart Mater. Struct. 22 (2013) 023001.
[3] S.P. Pellegrini, N. Tolou, M. Schenk, J.L. Herder, Bistable vibration energy harvesters: a review, J. Intell. Mater. Syst. Struct. 24 (2013) 1303–1312.
[4] J. T. Lin, B. Alphenaar, Enhancement of energy harvested from a random vibration source by magnetic coupling of a piezoelectric cantilever J. Intell. Mater. Syst. Struct. 21 (2010) 1337–41.
[5] M. Ferrari, V. Ferrari, M. Guizzetti , B. Andò, S. Baglio, C.Trigona, Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters , Sensors and Actuators A 162 (2010) 425–431.
[6] L.Tang, Y. Yang, A nonlinear piezoelectric energy harvester with magnetic oscillator, Physics letters 101 (2012) 094102.
[7] W. Q. Liu, A Badel, F. Formosa, Y. P. Wu and A. Agbossou, Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting, Smart Mater. Struct. 22 (2013) 035013.
[8] F. Cottone, L. Gammaitoni, H. Vocca, M. Ferrari, V. Ferrari, Piezoelectric buckled beams for random vibration energy harvesting, Smart Mater. Struct. 21 (2012) 035021 (11pp).
[9] V. R. Challa, M. G. Prasad, Y. Shi, F. T. Fisher, A vibration energy harvesting device with bidirectional resonance frequency tunability, Smart Mater. Struct. 17 (2008) 015035 (10pp).
[10] B. Andò, S. Baglio, F. Maiorca, C. Trigona, Analysis of two dimensional, wide-band, bistable vibration energy harvester, Sensors and Actuators A 202 (2013) 176–182.
[11] D.-A. Wang, H.-T. Pham, Y.-H. Hsieh, Dynamical switching of an electromagnetically driven compliant bistable mechanism, Sensors and Actuators A 149 (2009) 143-151.
[12] H.-T. Pham, D.-A. Wang, A quadristable compliant mechanism with a bistable
structure embedded in a surrounding beam structure, Sensors and Actuators A: Physical, June 2011, v. 167, n. 2, pp. 438-448. (SCI).
[13] H.-T. Pham, D.-A. Wang, A constant-force bistable mechanism for force regulation
and overload protection, Mechanism and Machine Theory, July 2011, v. 46, n. 7, pp. 899-909. (SCI).
[14] D.-A. Wang, J.-H. Chen, H.-T. Pham, A tristable compliant micromechanism with two serially connected bistable mechanisms, Mechanism and Machine Theory, January 2014, v. 71, pp. 27-39. (SCI).
[15] J. Qiu, J.H. Lang, A.H. Slocum, A curved-beam bistable mechanism, Journal of Microelectromechanical Systems 13 (2004) 137-146.
[16] G. Chen, D.L. Wilcox, L.L. Howell, Fully compliant double tensural tristable
micromechanisms (DTTM), Journal of Micromechanics and Microengineering 19 (2009) .
[17] I. Sari, T. Balkan H. Kulah, An electromagnetic micro energy harvester based on an array of parylene cantilevers, J. Micromech. Microeng. 19 (2009) 105023.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top