|
[1] H. Vocca, I. Neri, F. Travasso, L. Gammaitoni, Kinetic energy harvesting with bistable oscillators, Appl. Energy 97 (2012) 771–776. [2] R.L. Harne, K.W. Wang, A review of the recent research on vibration energy harvesting via bistable systems, Smart Mater. Struct. 22 (2013) 023001. [3] S.P. Pellegrini, N. Tolou, M. Schenk, J.L. Herder, Bistable vibration energy harvesters: a review, J. Intell. Mater. Syst. Struct. 24 (2013) 1303–1312. [4] J. T. Lin, B. Alphenaar, Enhancement of energy harvested from a random vibration source by magnetic coupling of a piezoelectric cantilever J. Intell. Mater. Syst. Struct. 21 (2010) 1337–41. [5] M. Ferrari, V. Ferrari, M. Guizzetti , B. Andò, S. Baglio, C.Trigona, Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters , Sensors and Actuators A 162 (2010) 425–431. [6] L.Tang, Y. Yang, A nonlinear piezoelectric energy harvester with magnetic oscillator, Physics letters 101 (2012) 094102. [7] W. Q. Liu, A Badel, F. Formosa, Y. P. Wu and A. Agbossou, Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting, Smart Mater. Struct. 22 (2013) 035013. [8] F. Cottone, L. Gammaitoni, H. Vocca, M. Ferrari, V. Ferrari, Piezoelectric buckled beams for random vibration energy harvesting, Smart Mater. Struct. 21 (2012) 035021 (11pp). [9] V. R. Challa, M. G. Prasad, Y. Shi, F. T. Fisher, A vibration energy harvesting device with bidirectional resonance frequency tunability, Smart Mater. Struct. 17 (2008) 015035 (10pp). [10] B. Andò, S. Baglio, F. Maiorca, C. Trigona, Analysis of two dimensional, wide-band, bistable vibration energy harvester, Sensors and Actuators A 202 (2013) 176–182. [11] D.-A. Wang, H.-T. Pham, Y.-H. Hsieh, Dynamical switching of an electromagnetically driven compliant bistable mechanism, Sensors and Actuators A 149 (2009) 143-151. [12] H.-T. Pham, D.-A. Wang, A quadristable compliant mechanism with a bistable structure embedded in a surrounding beam structure, Sensors and Actuators A: Physical, June 2011, v. 167, n. 2, pp. 438-448. (SCI). [13] H.-T. Pham, D.-A. Wang, A constant-force bistable mechanism for force regulation and overload protection, Mechanism and Machine Theory, July 2011, v. 46, n. 7, pp. 899-909. (SCI). [14] D.-A. Wang, J.-H. Chen, H.-T. Pham, A tristable compliant micromechanism with two serially connected bistable mechanisms, Mechanism and Machine Theory, January 2014, v. 71, pp. 27-39. (SCI). [15] J. Qiu, J.H. Lang, A.H. Slocum, A curved-beam bistable mechanism, Journal of Microelectromechanical Systems 13 (2004) 137-146. [16] G. Chen, D.L. Wilcox, L.L. Howell, Fully compliant double tensural tristable micromechanisms (DTTM), Journal of Micromechanics and Microengineering 19 (2009) . [17] I. Sari, T. Balkan H. Kulah, An electromagnetic micro energy harvester based on an array of parylene cantilevers, J. Micromech. Microeng. 19 (2009) 105023.
|