(3.92.96.236) 您好!臺灣時間:2021/05/07 15:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王鈺憲
研究生(外文):Yu-Hsien Wang
論文名稱:硫化鋅/氟化鈣異質界面結構之第一原理研究
論文名稱(外文):Ab-initio Study of ZnS/CaF2(111) Heterostructures
指導教授:劉柏良劉柏良引用關係
指導教授(外文):Po-Liang Liu
口試委員:洪銘聰林克偉
口試委員(外文):Ming-tsung HungKo-Wei Lin
口試日期:2016-07-01
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:79
中文關鍵詞:第一原理硫化鋅氟化鈣界面能
外文關鍵詞:First-PrinciplesZnSCaF2Interface Energy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本論文以第一原理(First-principles)密度泛函理論(Density functional theory, DFT)硫化鋅薄膜成長於立方結構氟化鈣CaF2(111)之界面能,並透過分析ZnS/CaF2最穩定異質界面模型以研究硫化鋅薄膜在界面處之原子排列。在ZnS/CaF2異質界面之界面能研究中,最穩定界面結構鍵結為F-Zn鍵且於Zn-rich與Ca-rich化學氣氛下之S-polar 2h-ZnS磊晶成長在CaF2上有最低界面能−0.5463 eV/Å2。在ZnS/CaF2異質界面之能帶偏移(Band offset)研究中,最穩定界面結構與界面能研究結果一致,能帶偏移計算結果得出硫化鋅與氟化鈣(111)最低值為3.11 eV,證實此界面鍵結結構可以得到高品質的硫化鋅薄膜。

The density functional theory derived from first-principles was adopted to investigate the interface energy and the atomic arrangement for the ZnS heteroepitaxially grown on CaF2(111). The F-Zn bond formed at the interface between S-polar ZnS and CaF2 was found to be a key structure of including the lowest interface energy at -0.5463 eV/Å2 in either a Zn-rich and Ca-rich atmosphere. The band offset calculation agrees well with this result, including that the high quality ZnS thin film is possibly formed on CaF2(111).

致謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 論文架構 3
第二章 背景介紹與文獻回顧 5
2.1 前言 5
2.2 雷射原理與架構 5
2.3 3c-ZnS與2h-ZnS晶體結構與材料特性介紹 6
2.4 氟化鈣晶體結構與材料特性介紹 9
2.5 界面能相關研究之文獻回顧 12
2.6 能帶偏移相關研究之文獻回顧 12
第三章 計算方法 16
3.1 前言 16
3.2 Hohenberg-Kohn Theorem 17
3.3 Kohn-Sham Equation 19
3.4 Local Density Approximation (LDA) 20
3.5 Generalized Gradient Approximation (GGA) 21
3.6 膺勢 22
3.7 界面能公式 22
3.8 自洽場計算(Self-consistent field method) 24
3.9 Band offsets理論與計算方法 25
第四章 硫化鋅/氟化鈣異質界面結構 29
4.1 前言 29
4.2 計算設定與模型建構 29
4.3 結果與討論 32
4.3.1硫化鋅與氟化鈣表面能研究 32
4.3.2 ZnS/CaF2(111)異質界面之界面能研究 32
4.3.3 3c-ZnS(111)/CaF2(111)異質界面之界面能研究 36
4.3.4 2h-ZnS(0001)/CaF2(111)異質界面之界面能研究 37
4.3.5 2h-ZnS(0001)/ 3c-ZnS(111)/CaF2(111)異質界面之界面能研究 37
4.3.6 3c-ZnS(111)/2h-ZnS(0001)/CaF2(111)異質界面之界面能研究 38
4.4 結論 38
第五章 硫化鋅/氟化鈣之價帶偏移研究 60
5.1 前言 60
5.2 計算方法 60
5.3 結果與討論 61
5.3.1硫化鋅與氟化鈣塊材結構 61
5.3.2 ZnS/CaF2宏觀平均位勢與價帶偏移 61
5.3.3 ZnS/CaF2鍵長分析 62
5.4 結論 63
第六章 總結論 72
參考文獻 73


[1]T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, pp. 902 (1999). DOI: 10.1109/2944.796309
[2]B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tuunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Applied Physics A, Vol. 63, pp. 109 (1996). DOI: 10.1007/BF01567637 WinterGreen
[3]Research。Femtosecond Lasers for Cataract Surgery Market。2013/11/07取自http://www.steamfeed.com/femtosecond-lasers-for-cataract-surgery-market。
[4]I. H. Baek, H. W. Lee, S. Bae1, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermun, “A efficient mode-locking of Sub-70-fs Ti:Sapphire laser by graphene saturable absorber,” Applied physics express, Vol. 5, pp. 032701-1 (2012). DOI: 10.1143/APEX.5.032701
[5]I. T. Sorokina, and E. Sorokin, “Femtosecond Cr2+-Based Lasers,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 21, pp. 1601519 (2015). DOI: 10.1109/JSTQE.2014.2341589
[6]C. Chlique, G. Delaizir, O. M. Conanec, C. Roucau, M. Dolle, P. Rozier, V. Bouquet, and X. H. Zhang, “A comparative study of ZnS powders sintering by Hot Uniaxial Pressing(HUP) and Spark Plasma Sintering,” Optical Materials, Vol. 33, pp. 706 (2011). DOI: 10.1016/j.optmat.2010.10.008
[7]Y. Yamada, T. Yamamoto, S. Nakamura, and T. Taguchi, “Biexciton luminescence from cubic ZnS epitaxial layers,” Applied physics letters, Vol. 69, pp. 88 (1996). DOI: 10.1063/1.118129
[8]Z. P. Guan, J .H. Zhang, G. H. Fan, and X.W. Fan, “Excitonic transition of (ZnSe—ZnS) /CaF2 strained-layer superlattices under lower excitation,” Journal of Crystal Growth, Vol. 117, pp. 515 (1992). DOI: 10.1016/0022-0248(92)90804
[9]O. V. Palashov, E.A. Khazanov, I. B. Mukhin, A. N. Smirnov, I. A. Mironov, K. V. Dukelskii, E. A. Garibin, P. P. Fedorov, S.V. Kuznetsov, V. V. Osiko, T. T. Basiev, and R. V. Gainutdinov, “Optical absorption in CaF2 nanoceramics,” Quantum electronics, Vol. 39(10), pp. 943 (2009). DOI: 10.1063/1.354069
[10]R. I. Eglitis, H. Shi, and G. Borstel, “First-principles calculations of the CaF2(111), (110), and (100) surface electronic and band structure,” Surface review and letters, Vol. 13, pp. 149 (2006). DOI: 10.1142/S0218625X06008190
[11]J. Yeo, G. Kim, S. Hong, M. S. Kim, D. Kim, J. Lee, H. B. Lee, J. Kwon, Y. Duk Suh, H. W. Kang, H. J. Sung, J. H. Choi, W. H. Hong, J. M. Ko, S. H. Lee, S. H. Choa, and S. H. Ko, “Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable
electronics application,” Journal of power sources, Vol. 246, pp. 562 (2014). DOI: 10.1016/j.jpowsour.2013.08.012
[12]Y. Kalisky, and O. Kalisky, “Applications and performance of high power lasers and in the battlefield,” Optical Materials, Vol. 34, pp. 457 (2011). DOI: 10.1016/j.optmat.2011.04.005
[13]W. Koechner, “Solid-State Laser Engineering,” Springer series in Optical Sciences, Vol. 1, pp.17-22 (2006). DOI: 10.1007/0-387-29338-8
[14]O. Svelto, “Principles of Lasers,” Springer Science & Business Media, Vol. 1, pp. 7-10 (2012). DOI: 10.1007/987-1-4615-7667-9
[15]T. Eom, H. Choi, and S. Lee, “Frequency stabilization of an internal mirror He–Ne laser by digital control,” Review of scientific instruments, Vol. 73, pp. 211 (2002). DOI: 10.1063/1.1419215
[16]J. Peter, M. Kumar, V. R. Ananad, R. Saleem, A. Sebastian, P .Radhakrishnan, V. P. N. Nampoori, C .P. G. Vallabhan, R. Prabhu, and M. Kailasnath, “Solvent effects on lasing characteristics for RhB laser dye,” Journal of luminescence, Vol. 169, pp. 227 (2016). DOI: 10.1016/j.jlumin.2015.09.002
[17]M. J. Adams, A. Hurtado, D. Labukhin, and I. D. Henning, “Nonlinear semiconductor lasers and amplifiers for all-optical information processing,” American Institute of Physics, Vol. 20, pp. 037102 (2010). DOI: 10.1063/1.3491096
[18]J. A. Piper, and H. M. Pask, “Crystalline Raman Lasers,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 13, pp. 1007-1 (2007). DOI: 10.1109/JSTQE.2007.897175
[19]F. A. Laporta, L. Gracia, J. Andres, J. R. Sambrano, J. A. Varela, and E. Longo, “A DFT study of structural and electronic properties of ZnS polymorphs and its pressure-induced phase transitions,” Journal of the American Ceramic Society, Vol. 97, pp. 4011 (2014). DOI: 10.1111/jace.13191
[20]Z. G. Chen, J. Zou, G. Liu, X. Yao, F. Li, X. L. Yuan, T. Sekiguchi, G. Q. Lu, and H. M. Cheng, “Growth, cathodoluminescence and field emission of ZnS tetrapod tree-like heterostructures,” Advanced functional materials, Vol. 15, pp. 9531 (2013). DOI: 10.1002/adfm.200800447
[21]X. Meng, H. Xiao, X. Wen, W. A. Goddard, S. Lia, and Gaowu Qin, “Dependence on the structure and surface polarity of ZnS photocatalytic activities of water splitting: first-principles calculations,” Physical chemistry chemical physics, Vol. 73(9), pp. 4700 (1993). DOI: 10.1039/c3cp50330e
[22]A. Miyake, H. Kominami, H. Tatsuoka, H. Kuwabara, Y. Nakanishi, and Y. Hatanaka, “Luminescent properties of ZnO thin "lms grown epitaxially on Si substrate,” Journal of Crystal Growth, Vol. 214, pp. 294 (2000). DOI: 10.1016/S0022-0248(00)00095-6
[23]Z. H. Chen, H. Tang, X. Fan, J. S. Jie, C. S. Lee , and S. T. Lee, “Epitaxial ZnS/Si core–shell nanowires and single-crystal silicon tube field-effect transistors,” Journal of Crystal Growth, Vol. 310, pp. 165 (2008). DOI: 10.1016/j.jcrysgro.2007.09.047
[24]K. Ichino, and A. Nishigaki, and A. Yamauchi, “Lattice relaxation of ZnS grown on GaP investigated by high‐resolution X‐ray diffraction and transmission electron microscopy,” Physica status solid, Vol. 9, pp. 1744 (2012). DOI: 10.1002/pssc.201100596
[25]P. O. Offor, B. A. Okorie , F. I. Ezema , V. S. Aigbodion, C. C. Daniel-Mkpume, and A. D. Omah, “Synthesis and characterization of nanocrystalline zinc sulphide thin films by chemical spray pyrolysis,” Journal of alloys and compounds, Vol. 650, pp. 381(2015). DOI: 10.1016/j.jallcom.2015.07.169
[26]S. S. Kawar, and B. H. Pawar, “Nanocrystalline grain size in ZnS thin films deposited by chemical bath technique,” Journal of Materials Science: Materials in Electronics, Vol. 21, pp. 906 (2010). DOI: 10.1007/s10854-009-0016-z
[27]H. K. Sadekar, N. G. Deshpande, Y. G. Gudageb, A. Ghoshb, S. D. Chavhan, S. R. Gosavi, and R. Sharma, “Growth, structural, optical and electrical study of ZnS thin films deposited by solution growth technique,” Journal of alloys and compounds, Vol. 453, pp. 519 (2008). DOI: 10.1016/j.jallcom.2007.10.123
[28]X. Wu, S. Qin, and Z. Wu, “First-principles study of structural stabilities, and electronic and optical properties of CaF2 under high pressure,” Physical Review B, Vol. 73, pp. 134103-1 (2006). DOI: 10.1103/PhysRevB.73.134103
[29]M. Verstraete, and X. Gonze, “First-principles calculation of the electronic, dielectric, and dynamical properties of CaF2,” Physical Review B, Vol. 68, pp. 195123 (2003). DOI: 10.1103/PhysRevB.68.195123
[30]T. Yokogawa, T. Saitoh, and T. Narusawa, “Optical characterization of ZnSe/ZnS strained-layer superlattices grown on CaF2 substrates,” Applied Physics Letters, Vol. 58(16), pp. 1754 (1991). DOI: 10.1063/1.105080
[31]M. Muallem, Alex Palatnik, Gilbert D. Nessim, and Yaakov R. Tischler, “Room Temperature Fabrication of Dielectric Bragg Reflectors Composed of a CaF2/ZnS Multilayered Coating,” ACS applied materials & interfaces, Vol. 7, pp. 474 (2015). DOI: 10.1021/am506531p
[32]Y. Y. Takamura, Z. T. Wang, Y. Fujikawa, T. Sakurai, Q. K. Xue, J. Tolle, P. L. Liu, A. V. G. Chizmeshya, J. Kouvetakis, and I. S. T. Tsong, “Surface and interface studies of GaN epitaxy on Si(111) via ZrB2 buffer layers,” Physical Review Letters, Vol. 95, pp. 266105 (2005). DOI: 10.1103/PhysRevLett.95.266105
[33]P. L. Liu, “Highly strained metastable heterojunction between wurtzite GaN(0001) and cubic CrN(111),” Journal of The Electrochemical Society, Vol. 157(11), pp. D577 (2010). DOI: 10.1149/1.3489369
[34]M. Peressi, N. Binggeli, and A. Baldereschi, “Band engineering at interfaces: theory and numerical experiments,” Journal of Physics D: Applied Physics, Vol. 31, pp. 1273 (1998). DOI: 10.1088/0022-3727/31/11/002
[35]P. Hohenberg and W. Kohn, ”Inhomogeneous electron gas,” Physical Review, Vol. 136, pp. B864 (1964). DOI: 10.1103/PhysRev.136.B864
[36]W. Kohn and L. J. Sham, ”Self-consistent equations including exchange and correlation effects,” Physical Review, Vol. 140, pp. 1133 (1965). DOI: 10.1103/PhysRev.140.A1133
[37]J. P. Perdew and Y. Wang, “Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation,” Physical Review B, Vol. 33, pp. 8800 (1986). DOI: 10.1103/PhysRevB.33.8800
[38]J. P. Perdew, J. A. Chevary, S. H. Vosko. K. A. Jackson, M. R. Petersen, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, Vol. 46, pp. 6671 (1992). DOI: 10.1103/PhysRevB.46.6671
[39]J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, pp. 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865
[40]M. C. Payne, M. P. Teter, D. C. Ailan, T. A. Arias, and J. D. Joannopouios, “Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients,” Reviews of Modern Physics, Vol. 64, pp. 1045 (1992). DOI:10.1103/RevModPhys.64.1045
[41]T. K. Bergstresser, and M. L. Cqhenf, “Electronic Structure and Optical Properties of Hexagonal CdSe, CdS, and ZnS,” Physical Review B, Vol. 26, pp. 1069 (1967). DOI: 10.1103/PhysRev.164.1069
[42]W. Luo, S. Ismail-Beigi, M. L. Cohen, and S. G. Louie, “Quasiparticle band structure of ZnS and ZnSe,” Physical Review B, Vol. 66, pp. 195215-1 (2002). DOI: 10.1103/PhysRevB.66.195215
[43]V. Kanchana, G. Vaitheeswaran, and M. Rajagopalan, “Structural phase stability of CaF2 and SrF2 under pressure,” Physical Review B, Vol. 328, pp. 283 (2003). DOI: 10.1016/S0921-4526(02)01851-3


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔