(35.175.212.130) 您好!臺灣時間:2021/05/18 04:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳劭旻
研究生(外文):Shao-Min Chen
論文名稱:利用第一原理計算探討硼碳氮三元化合物超硬合金之機械性質
論文名稱(外文):Mechanical Properties of Superhard Alloys of Boron-Carbon-Nitride Compounds: The Ab initio Study
指導教授:劉柏良劉柏良引用關係
指導教授(外文):Po-Liang Liu
口試委員:洪銘聰林克偉
口試委員(外文):Ming-Tsung HungKe-Wei Lin
口試日期:2016-07-01
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:52
中文關鍵詞:第一原理超硬合金彈性常數
外文關鍵詞:ab initiosuperhard alloyselastic constants
相關次數:
  • 被引用被引用:0
  • 點閱點閱:80
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用第一原理(Ab initio)密度泛函理論分析硼-碳-氮三元化合物機械性質,以鑽石與空間群R3之碳化物結構為模型建構基底,分別將硼、碳及氮以不同鍵結方式與原子化合比排列組合建構出模型,藉由磊晶應變能理論計算彈性常數與塊體模數分析晶體機械性質,找尋具最佳機械性質之硼-碳-氮三元化合物合金結構。立方結構硼-碳-氮三元化合物中以空間群P2221原子濃度C0.5B0.25N0.25具有最接近鑽石之彈性常數C11為911.1且超越立方結構氮化硼,而空間群R3之碳化物結構硼-碳-氮三元化合物中以原子濃度C0.375B0.25N0.375具有最高彈性常數C11並超越鑽石,綜上所述我們推論原子濃度為C0.375B0.25N0.375之空間群R3之碳化物結構為B-C-N三元化合物中最能有效提升材料結構機械性質成為具發展潛力並超越鑽石硬度特性之新穎超硬合金。

The boron-carbon-nitride ternary compounds is of interest since the hardness of the boron-carbon-nitride ternary compounds is comparable to that of diamond. To explore the composition of boron-carbon-nitrogen compound that possesses the superior hardness, this work has implemented the calculations of ab initio and epitaxial strain energy. The results revealed that C0.5B0.25N0.25 with the space group of P2221 is the most promising cubic ternary alloy because the elastic constant C11 of C0.5B0.25N0.25 is 911.1 GPa which is as close as diamond. The results revealed that C0.375B0.25N0.375 with the space group of R3 was the most promising ternary alloy because the elastic constant C11 of C0.375B0.25N0.375 is 1308.7 GPa which is even higher than that of diamond.

致謝 i
摘要 ii
Abstract iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 論文架構 2
第二章 背景介紹與文獻回顧 7
2.1 前言 7
2.2 超硬合金材料 7
2.3 碳同素異形體 7
2.4 硼碳化物製備及結構特性與模擬 8
2.5 硼氮化物製備及結構特性與模擬 9
2.6 碳氮化物製備及結構特性與模擬 11
2.7 硼碳氮化物製備及結構特性與模擬 11
第三章 理論計算與方法 15
3.1 前言 15
3.2 Hohenberg-Kohn Theorem 16
3.3 Kohn-Sham Equation 18
3.4 Local Density Approximation 19
3.5 Generalized Gradient Approximation 19
3.6 贗勢 20
3.7 The theory of epitaxial strain energy 21
第四章 鑽石結構之硼碳氮合金機械性質 24
4.1 前言 24
4.2 計算設定與模型建構 24
4.3 結果與討論 25
4.4 結論 27
第五章 空間群R3之碳化物結構之硼碳氮合金機械性質 36
5.1 前言 36
5.2 計算設定與模型建構 36
5.3 結果與討論 37
5.4 結論 38
第六章 總結論 47
參考文獻 48


[1]D. He, Y. Zhao, L. Daemen, J. Qian, T. D. Shen, and T. W. Zerda,” Boron suboxide: As hard as cubic boron nitride,” Applied physics letters, Vol. 81, pp. 643-645, 2002. DOI:10.1063/1.1494860
[2]S. Veprek, “The search for novel, superhard materials,” Journal of Vacuum Science & Technology A, Vol. 17, pp. 2408-2420 1999. DOI: 10.1116/1.581977
[3]V. V. Brazhkin, and A. G. Lyapin, “Denser than diamond: Harder than diamond: dreams and reality,” Philosophical Magazine. A, Vol. 82, pp. 231 2012. DOI: 10.1080 /0141861011006774 3
[4]J. Robertson,” Diamond-like amorphous carbon,” Materials Science and Engineering: R: Reports, Vol. 37, pp. 129-281, 2002. DOI: 10.1016/S0927-796X(02)00005-0
[5]Q. Zhu, A. R. Oganov, M. A. Salvad´o, P. Pertierra, and A. O. Lyakhov, “Denser than diamond: Ab initio search for superdense carbon allotropes,” Physical Review B, Vol. 83, pp. 193410 2011. DOI: 10.1103/PhysRevB.83.193410
[6]N. Dubrovinskaia, V. L. Solozhenko, N. Miyajima, V. Dmitriev, O. O. Kurakevych, and L. Dubrovinsky, “Superhard nanocomposite of dense polymorphs of boron nitride: Noncarbon material has reached diamond hardness,” Applied Physics Letters, Vol. 90, pp. 101912 2007. DOI: 10.1063/1.2711277
[7]P. Wang, D. He, L. Wang, Z. Kou, Y. Li, L. Xiong, Q. Hu, C. Xu, L. Lei, Q. Wang, J. Liu, and Y. Zhao, “Diamond-cBN alloy: A universal cutting material,” Applied Physics Letters, Vol. 107, pp. 107901 2015. DOI: 10.1063/1.4929728
[8]G. Kresse and, J. Furthmuller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science, Vol. 6, pp. 15 1996. DOI: 10.1016/0927-0256(96)00008-0
[9]G. Kresse, and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” Journal of Physics: Condensed Matter, Vol. 6, pp. 8245 1994. DOI: 10.1018/0953-8984/6/40/015
[10]V. Ozolin¸sˇ, C. Wolverton, and A. Zunger, “Effects of Anharmonic Strain on The Phase Stability of Epitaxial Films and Superlattices:Applications to Noble Metals, ” Physical Review B, Vol. 57, pp.4816–4828, 1998 DOI: 10.1103/PhysRevB.57.4816
[11]P. L. Liu, Y. J. Siao, “Ab Initio Study on Preferred Growth of ZnO, ” Scripta Material , Vol. 64, pp.483–485, 2011 DOI: 10.1016/j.scriptamat.2010.11.021
[12]J. Musil,” Hard and superhard nanocomposite coatings,” Surface and Coatings Technology, Vol. 125, pp. 322330, 2000. DOI:10.1016/S0257-8972(99)00586-1
[13]S. J. Clark, G. J. Ackland, and J. Crain,” Theoretical stability limit of diamond at ultrahigh pressure,” Physical review B, Vol 52, pp. 15035-15038, 1995. DOI: http://dx.doi.org/10.1103/PhysRevB.52.15035
[14]G. M. Swain and R. Ramesham, ” The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes,” Analytical Chemistry, Vol 65, pp. 345–351, 1993. DOI: 10.1021/ac00052a007
[15]H. Liu, Q. Li, L. Zhu, Y. Ma,” Superhard and superconductive polymorphs of diamond-like BC3,” Physics Letters A, Vol. 375, pp. 771-774, 2011. DOI: 10.1016/j.physleta.2010.12.034
[16]H. Liu, Q. Li, L. Zhu, Y. Ma,” Superhard polymorphs of diamond-like BC7,” Solid State Communications, Vol. 151, pp. 716-719, 2011. DOI: 10.1016/j.ssc.2011.02.013
[17]M. Ma, B. Yang, Z. Li, M. Hu, Q. Wang, L. Cui, D.i Yu, and J. He, “A metallic superhard boron carbide:first-principles calculations,” Physical Chemistry Chemical Physics, Vol. 17, pp. 9748, 2015. DOI: 10.1039/c5cp00305a
[18]M Halo, C. Pisani, L. Maschio, S. Casassa, M. Schutz, and D. Usvyat, “Electron correlation decides the stability of cubic versus hexagonal boron nitride,” Physical Review B, Vol. 83, pp. 035117 2011. DOI: 10.1103/PhysRevB.83.035117
[19]X. Fan, W. T. Zheng, Q. Jiang, and D. J. Singh, “Pressure evolution of the potential barriers for transformations of layered BN to dense structures,” Royal Society of Chemistry Advances, Vol. 5, pp. 875500 2015. DOI: 10.1039/c5ra17153aY. Saito, T. Nakahira, and S. Uemura,” Growth conditions of double-walled Carbon nanotubes in Arc Discharge,” The Journal of Physical Chemistry. B, Vol. 107, pp. 931-934, 2003. DOI: 10.1021/jp021367o
[20]J. S. Zhang, J. D. Bass, T. Taniguchi, A. F. Goncharov, Y. Y. Chang, and S. D. Jacobsen, “Elasticity of cubic boron nitride under ambient conditions,” Journal of Applied Physics, Vol. 109, pp. 063521 2011. DOI: 10.1063/1.3561496
[21]Q. Peng, W. Ji, and S. De, “First-principles study of the effects of mechanical strains on the radiation hardness of hexagonal boron nitride monolayers,” Royal Society of Chemistry, Vol. 5, pp. 695-703 2013 DOI: 10.1039/C2NR32366D
[22]Q. Fan, Q. Wei, H. Yan, M. Zhang, Z. Zhang, J. Zhang, and D. Zhang, “ Elastic and electronic properties of Pbca-BN: First-principles calculations,” Computational materials science, Vol. 85, pp. 80-87 2014. DOI: 10.1016/j.commatsci.2013.12.045
[23]Z. Pan, H. Sun, Y. Zhang, and C. Chen, “Harder than Diamond: Superior Indentation Strength of Wurtzite BN and Lonsdaleite,” Physical Review Letters, Vol. 102, pp. 055503 2009. DOI: 10.1103/PhysRevLett.102.055503
[24]J. Long, C. Shu, L. Yang, and M. Yang, “Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation,” Journal of Alloys and Compounds, Vol. 644, pp. 638-644 (2015). DOI: 10.1016/j.jallcom.2015.04.229
[25]S. L. Qiu, and P. M. Marcus, “Structure and stability under pressure of cubic and hexagonal diamond crystals of C, BN and Si from first principles,” Journal of Physic. Condensed Matter, Vol. 23, pp. 215501 2011. DOI: 10.1088/0953-8984/23/21/215501
[26]Y. Zhang, H. Sun, and C. Chen,” Strain dependent bonding in solid C3N4: High elastic moduli but low strength,” Physical review B, Vol. 73, pp. 064109, 2006. DOI: 10.1103/PhysRevB.73.064109
[27]A. Essafti, J. L. G. Fierro, and E. Ech-chamikh, “RF power effect on structural characteristics of Amorphous Carbon Nitride thin films deposited by reactive radiofrequency sputtering,” The Moroccan Statistical Physical and Condensed Matter Society, Vol. 12, pp. 227-229 2010.
[28]N. Dwivedi, S. Kumar, H. K. Malik, C. M. S. Rauthan, and O. S. Panwar, “Influence of bonding environment on nano-mechanical properties of nitrogen containing hydrogenated amorphous carbon thin films,” Materials Chemistry and Physics, Vol. 130, pp. 775-785 2011. DOI: 10.1016/j.matchemphys.2011.07.060
[29]X. Zhang, X. Jia, Z. Zhang, M. Zhao, W. Guo, G. Huang, and H. Ma, “Synthesis and characterization of New “BCN” diamond under high pressure and high temperature Conditions,” Journal of the American Chemical Society, Vol. 11, pp. 1006-1014 2011. DOI: 10.1021/cg100945n
[30]X. F. Zhou, J. Sun, Q. R. Qian, X. Guo, Z. Liu, Y. Tian, and H. T. Wang, “A tetragonal phase of superhard BC2N,” Journal of Applied Physics, Vol. 105, pp. 093521 (2009). DOI: 10.1063/1.3117521
[31]Y. Zhang, H. Sun, and C. Chen, “Influence of carbon content on the strength of cubic BCxN: A first-principles study, ” Physical review B, Vol. 77, pp. 094120 2008. DOI: 10.1103/PhysRevB.77.094120
[32]Q. Li, M. Wang, A. R. Oganov, T. Cui, Y. Ma,and G. Zou,” Rhombohedral superhard structure of BC2N,” Journal of Applied Physics, Vol. 105, pp. 053514, 2009. DOI: 10.1016/S1466-6049(01)00085-X
[33]M. Mattesini, S.F. Matar, ” Search for ultra-hard materials: theoretical characterisation of novel orthorhombic BC2N crystals,” International Journal of Inorganic Materialss, Vol. 3, pp. 943-957, 2001. DOI: 10.1063/1.3086649
[34]P. Hohenberg and W. Kohn, ”Inhomogeneous Electron Gas,” Physical Review, Vol. 136, pp. B864, 1964. DOI: 10.1103/PhysRev.136.B864
[35]W. Kohn and L. J. Sham, ”Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review, Vol. 140, pp. A1133, 1965. DOI: 10.1103/PhysRev.140.A1133
[36]J. P. Perdew and Y. Wang, “Accurate and Simple Density Functional for the Electronic Exchange Energy: Generalized Gradient Approximation,” Physical Review B, Vol. 33, pp. 8800, 1986. DOI: 10.1103/PhysRevB.33.8800


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top