(3.238.173.209) 您好!臺灣時間:2021/05/16 21:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:謝昇峰
研究生(外文):Sheng-Fong Sie
論文名稱:Pb-Sn-S液態半導體敏化太陽電池和Pb-Sb-S固態半導體敏化太陽電池的效率提升
論文名稱(外文):Enhanced performance in Pb-Sn-S liquid-junction and Pb-Sb-S solid-state semiconductor-sensitized solar cells
指導教授:李明威李明威引用關係
口試委員:吳秋賢施仁斌
口試日期:2016-07-05
學位類別:碩士
校院名稱:國立中興大學
系所名稱:奈米科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:98
中文關鍵詞:半導體敏化太陽電池太陽電池
外文關鍵詞:semiconductor-sensitized solar cellssolar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本實驗總共分為兩部份,第一部份為Pb-Sn-S液態半導體敏化太陽能電池,第二部份為Pb-Sb-S固態半導體敏化太陽能電池的效率提升。並且皆利用X-ray粉末繞射儀、穿透式電子顯微鏡(TEM)與紫外-可見光譜儀(UV-Vis Spectroscopy)分析所合成出來的材料特性。
在第一個研究中,Pb-Sn-S利用兩階段的連續離子吸附反應法長在TiO2上,並以190 ℃在氮氣下退火4分鐘,即可合成Pb-Sn-S量子點。Pb-Sn-S敏化太陽能電池的最佳效率為使用金對電極和塗佈一層硫化鋅上去,在一個太陽光下,轉換效率為2.17 %,當電池降低在10 %的太陽光下其效率增加到3.31 %。在最後的外部量子效率量測中,其波長650 nm的轉換效率可達67 %。
在第二個研究中,先前本實驗室已經研究並且效率達到4.14%。Pb-Sb-S本製程一樣利用兩階段的連續離子吸附反應法長在TiO2上。本實驗主要在改變TiO2和阻障層厚度後,並在一個太陽光下,其轉換效率可達到2.61 %,當電池降低在10 %的太陽光下其效率增加到5.13 %,效率相較之前有24 %的進步,另外,本實驗有量測降低在5 %的太陽光下,其效率更可達到6.04 %。在最後的外部量子效率量測中,其波長550 nm的轉換效率可達78 %。


This study consists of two parts. The first part is about Pb-Sn-S liquid-junction semiconductor-sensitized solar cells, whereas the second part is about enhancing performance of Pb-Sb-S solid-state semiconductor-sensitized solar cells. All of the materials were characterized by X-ray diffraction and transmission electron microscopy and UV-vis spectroscopy.
In the first study, Pb-Sn-S was synthesized onto a TiO2 substrate by using a two-step successive ionic layer adsorption reaction deposition (SILAR) method. After a two-stage of SILAR and annealing at 190 ℃for 4 min in N2, Pb-Sn-S quantum dots were formed. The optimal performance of Pb-Sn-S sensitized solar cells was obtained by using Au as counter electrode and a coating of ZnS layer. Under AM 1.5 sunlight illumination (one sun), the power conversion efficiency achieved 2.17 %. Under 10 % reduce sunlight, the efficiency increased to 3.31 %. Finally, the external quantum efficiency (EQE) has the highest value of 67 % atλ= 650 nm.
In the second study, the investigation of Pb-Sb-S which has the best efficiency of 4.14 % is continued. Pb-Sb-S was also synthesized onto a TiO2 substrate by using a two-step SILAR method. This study continued to investigate other parameters, i.e. TiO2 and blocking layers thickness. Under one sun, the power conversion efficiency achieved 2.61 %, whereas under 10 % reduced sunlight, the efficiency increased to 5.13 %, obtaining an increase of 24 % over the previous result. In additional, Under 5 % reduced sunlight, the efficiency increased to 6.04 %. Finally, the EQE has the highest value of 78 % atλ= 550 nm.


第一章 緒論 1
1-1前言 1
1-2 研究動機 3
第二章文獻回顧與實驗原理 5
2-1 Pb-Sn-S 文獻回顧 5
2-2 Pb-Sb-S 文獻回顧 9
2-3 半導體敏化太陽能電池(QDSSC)工作原理 13
2-3-1 液態半導體敏化太陽能電池工作原理 [10] 13
2-3-2 固態半導體敏化太陽能電池工作原理 14
2-4 電洞傳輸材料 ( Hole transport layer, HTM ) 15
2-5 半導體和量子點特性 16
2-5-1 半導體特性與優勢 16
2-5-2 量子侷限效應 17
2-5-3 衝擊離子效應與歐傑再結合 19
2-6 透明導電玻璃 ( Transparent conducting oxide,TCO ) 20
2-7 連續離子層吸附反應法 21
2-8 太陽能電池效能特性分析 22
2-8-1 太陽能電池量測光源 22
2-8-2 短路電流、開路電壓、填充因子及功率轉換效率 24
第三章 實驗流程 26
3-1 實驗藥品與儀器 26
3-2 Pb-Sn-S 液態太陽能電池實驗過程 30
3-2-1 Pb-Sn-S 實驗流程 如圖3-2-1-1與圖3-2-1-2: 30
3-2-2 FTO玻璃切割與清洗 32
3-2-3 TTIP緻密層製作 32
3-2-4 TiO2吸收層與散射層製作 33
3-2-5 Pb-Sn-S量子點合成 35
3-2-6 硫化鋅(ZnS) coating 37
3-2-7 對電極製作 38
3-2-8 電解液製作 39
3-2-9 電池組裝 40
3-3 Pb-Sb-S 固態太陽能電池實驗過程 41
3-3-1 Pb-Sb-S 實驗流程 如圖3-3-1-1與圖3-3-1-2: 41
3-3-2 Etching FTO與玻璃清洗 43
3-3-3 Hot -spray TiO2 blocking-layer 44
3-3-4 Coating TiO2 layer 47
3-3-5 Pb-Sb-S量子點合成 48
3-3-6 HTM填充 51
3-3-7 濺鍍金電極 52
3-4 I-V量測 53
3-5 Power dependence量測 53
3-6 外部量子效率 ( External quantum efficiency , EQE )量測 53
3-7 穿透光譜樣品製作 54
3-8 X-ray diffraction樣品製備 54
3-9 FESEM樣品製備 55
3-10穿透式電子顯微鏡(TEM)樣品製備 55
第四章 結果與討論 56
4-1 Pb-Sn-S 材料特性 56
4-1-1 Pb-Sn-S XRD分析 56
4-1-2 Pb-Sn-S EDS元素分析 58
4-1-3 TEM型態分析 60
4-1-4 UV-Vis光譜儀分析 62
4-2 Pb-Sn-S液態半導體敏化太陽能電池的效能分析 64
4-2-1 不同TTIP cycle數的效率比較 64
4-2-2 不同SILAR cycle數的效率比較 67
4-2-3 不同退火時間的效率比較 68
4-2-4 不同對電極和ZnS coating 69
4-2-5 Power dependence量測 71
4-2-6 外部量子效率分析 72
4-3 Pb-Sb-S 材料特性 74
4-3-1 Pb-Sb-S XRD分析 74
4-3-2 TEM型態分析 75
4-3-3 UV-Vis光譜儀分析 76
4-4 Pb-Sb-S 固態半導體敏化太陽能電池的效能分析 79
4-4-1 不同TiO2厚度的效率比較 79
4-4-2 不同SILAR cycle數的效率比較 81
4-4-3 Lithium salt濃度的效率關係 82
4-4-4 不同Hot –spray cycle的效率關係 84
4-4-5 一般大氣下對固態太陽能電池元件的影響 86
4-4-6 Power dependence量測 87
4-4-7 外部量子效率分析 90
4-5 Pb-Sb-S固態半導體敏化太陽能電池的剖面結構 92
第五章 結論 94
5-1 Pb-Sn-S 液態半導體敏化太陽能電池總結 94
5-2 Pb-Sb-S 固態半導體敏化太陽能電池總結 94
5-3 未來工作 95
參考文獻 96


1.Reported timeline of solar cell energy conversion efficiencies (from National Renewable Energy Laboratory (USA)) (2016).
2.D. M. Unuchak, K. Bente, G. Kloess, W. Schmitz, V. F. Gremenok, V. A. Ivanov, and V. Ukhov, "Structure and optical properties of PbS-SnS mixed crystal thin films," physical status solidi C, 6, 1191-1194 (2009).
3.H. Wei, Y. Su, S. Chen, Y. Lin, Z. Yang, H. Sun, and Y. Zhang,"Synthesis of ternary PbxSn1−xS nanocrystals with tunable band gap," CrystEngComm, 13, 6628-6631 (2011).
4.M. Y. Versavel and J.A. Haber, " Lead antimony sulfides as potential solar absorbers for thin film solar cells," Thin Solid Films, 515, 5767-5770 (2007).
5.S. I. Boldish and W. B. White, " Optical band gaps of selected ternary sulfide minerals," American Mineralogist, 83, 865–871 (1998).
6.R. B. Soriano, C.D. Malliakas,J. Wu,and M. G. Kanatzidis, "Cubic Form of Pb2-xSnxS2 Stabilized through Size Reduction to the Nanoscale ," Journal of the American Chemical Society, 134, 3228-3233 (2012)
7.X. Liu, Y. Li, B. Zhou, D. Wang, A. N. Cartwright, and M. T. Swihart, "Formation of IV–VI Alloy Nanocrystals for Application in Solution-Processed Optoelectronic Devices: The Case of Pb1–xSnxS," Chemistry of Materials, 25, 4409-4415 ( 2013).
8.A. Skowron. and I. D. Brown," Crystal chemistry and structures of lead-antimony sulfides," Acta Crystallographica, B50, 524-538 (1994).
9.Y.C. Chang, N. Suriyawong, B. A. Aragaw, J.B. Shi, P. Chen, M.W. Lee, "Lead antimony sulfide (Pb5Sb8S17) solid-state quantum dot-sensitized solar cells with an efficiency of over 4%,"Journal of Power Sources, 312, 86-92 (2016).
10.M .Grätzel, "Dye-sensitized solar cells, " Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 145-153 (2003).
11.Y. Gao, E. Talgorn,M. Aerts,M. T. Trinh,J. M. Schins,A. J. Houtepen,and
L. D. A. Siebbeles, "Enhanced hot-carrier cooling and ultrafast spectral diffusion in strongly coupled PbSe quantum-dot solids, "Nano Letters, 11, 5471-5476 (2011).
12.M. Stolka , J.F. Yanus, and D.M. Pai, "Hole Transport in Solld Solutions of a Diamine in Polycarbonate," The Journal of Physical Chemistry, 88, 4707-4714 (1984).
13.李明威, 物理雙月刊三十七卷第二期 (2015).
14.X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tasy, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir,and S. Weiss, "Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics," Science, 307, 538-544 (2005).
15.S. H. Choi, H. Song, II. K. Park, J. H. Yum, S. S. Kim, S. Lee, Y. E. Sung," Synthesis of size-controlled CdSe quantum dots and characterization of CdSe-conjugated polymer blends for hybrid solar cells," Journal of Photochemistry and Photobiology A: Chemistry, 179, 135-141 (2006).
16.R. D. Schaller ,and V. I. Klimov," High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion," Physical Review Letters, 92, 1866011-4 (2004).
17.陳佳靜, 國立國立中興大學物理所碩士論文 (2008).
18.楊惟智, 國立國立中興大學物理所碩士論文 (2013).
19.online: http://www.newport.com/Introduction-to-Solar-Radiation/411919/103 3/content.aspx.
20.陳頤承, 郭昭顯, 陳俊亨, 工業材料雜誌258期(2008).
21.顏志豪, 國立國立中興大學物理所碩士論文( 2013).
22.林美佳, 國立國立中興大學物理所碩士論文(2011).
23.Y. R. Ho, and M. W. Lee, " AgSbS2 semiconductor-sensitized solar cells, " Electrochemistry Communications ,26, 48-51 (2013).
24.R. G. Gordon, "Criteria for Choosing Transparent Conductors, " MRS BULLETIN, 25, 52-57 (2000).
25.L. Kavan ,and M. Grätzel,"Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis, " Electrochimica Acta, 40, 643-652 (1995).
26.H. J. Snaith, and M. Grätzel, "The Role of a “Schottky Barrier” at an Electron-Collection Electrode in Solid-State Dye-Sensitized Solar Cells., "Advanced Materials, 18, 1910-1914 (2006).
27.D. Liu ,and T. L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, " Nature Photonics, 8, 133-138 (2014).
28.W. H. Nguyen, C. D. Bailie,E. L. Unger,and M. D. McGehee, "Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells, " Journal of the American Chemical Society, 136, 10996-11001 (2014).
29.I. K. Ding, N. Tetreault, J. Brillet, B. E. Hardin,E. H. Smith, S. J. Rosenthal, F. Sauvage, M. Gratzel, and M. D. McGehee,"Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance, " Advanced Functional Materials., 19, 2431-2436 (2009).
30.G. P. Smestad, F.C. Krebs, C. M. Lampert, C. G. Granqvist, K. L. Chopra, X. Mathew, and H. Takakura," Reporting solar cell efficiencies in Solar Energy Materials and Solar Cells," Solar Energy Materials and Solar Cells, 92, 371-373 (2008).
31.M. C. Jung, S. R. Raga, L. K. Ono,and Y. Qi, "Substantial improvement of perovskite solar cells stability by pinhole-free hole transport layer with doping engineering, " Scientific Reports, 5, 98631-5 (2015).
32.C. H. M. Chuang, P. R. Brown,V. Bulović ,and M. G. Bawendi, "Improved performance and stability in quantum dot solar cells through band alignment engineering," Nature Materials,13,796-801 (2014).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文