(34.237.52.11) 您好!臺灣時間:2021/05/18 14:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳梨萍
研究生(外文):Li-Ping Chen
論文名稱:Sn-Sb-S 液態半導體敏化太陽能電池
論文名稱(外文):Sn-Sb-S liquid-junction semiconductor-sensitized solar cells
指導教授:李明威李明威引用關係
口試委員:李文献吳秋賢
口試日期:2016-07-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:奈米科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:57
中文關鍵詞:半導體敏化太陽能電池
外文關鍵詞:semiconductor-sensitized solar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用連續離子層吸附反應法(Successive Ionic Layer Adsorption and Reaction method,SILAR)合成出Sn-Sb-S 量子點 (QDs)材料,並將其應用於液態半導體敏化太陽電池上。其實驗參數為:前驅物溶液濃度皆為0.1 M、Sn-S(6)/Sb-S(6)的SILAR次數、以溫度300 °C退火10分鐘、利用ZnS包覆、多碘電解液搭配鉑對電極為最佳化結果,在100 %太陽光下可得到該電池之光電轉換效率1.38 %、開路電壓 (open circuit voltage, VOC)0.42 V、短路電流密度(short-circuit current, JSC) 7.08 mA/cm2與填充因 (Fill factor, FF)46.51 %。
再利用X-ray粉末繞射儀分析Sn-Sb-S QDs以及由穿透式電子顯微鏡 (Transmission Electron Microscope, TEM)之結果得知其顆粒大小約為13~17 nm、光學特性則是利用紫外-可見光譜儀(UV-Vis Spectroscopy)進行分析並計算出能隙約為1.60eV。

In this study, successive ionic layer adsorption and reaction (SILAR) method was applied to synthesize Sn-Sb-S quantum dots (QDs) liquid-junction semiconductor-sensitized solar cells. The best experimental parameters to fabricate the solar cells: 0.1 M of precursor solution consentration, Sn-S(6)/Sb-S(6) of SILAR cycles, post annealling at 300 ° C for 10 min in N2, ZnS coating, using polyiodide as electrolyte, and using Pt as counterelectrode. The best efficiency under AM 1.5 sunlight illumination (one sun) yielded the power conversion efficiency of 1.38 % with an open circuit voltage of 0.42 V, a short-circuit current of 7.08 mA/cm2, and a fill factor of 46.51 %. X-ray diffractometer to anlysis Sn-Sb-S QDs , transmission electron microscope to know the partical size of 13~17 nm, UV-Vis spectroscopyto calculate band gap of 1.60 eV.

第一章 序論 1
1-1 前言 1
1-2 研究動機 3
1-2-1利用半導體材料取代染料分子作為敏化太陽電池 3
1-2-2以材料Sn-Sb-S作為敏化太陽電池之啟發 4
第二章 文獻回顧與原理 5
2-1半導體材料Sb-Sb-S 5
2-1-1合成材料Sb-S 5
2-1-2合成材料Sn-S 7
2-2量子點太陽能電池(QDSSC)工作原理 [12] 8
2-3電池結構與功能 9
2-3-1 FTO透明導電玻璃 10
2-3-2緻密層 (Titanium(IV) isoproproxide, TTIP) 11
2-3-3 氧化物半導體吸附層──TiO2 12
2-3-4 光敏化半導體材料 12
2-3-5硫化鋅 (ZnS)包覆半導體材料 13
2-3-6散射層 (Scattering layer) 14
2-3-7 電解液 14
2-3-8 對電極 15
2-4 QDSSC效能分析 15
2-4-1 太陽光與模擬光源 15
2-4-2 QDSSC之光電轉換效率量測 16
2-5連續離子層吸附反應法 (Successive ionic layer absorption and reaction, SILAR) 18
2-6 量子侷限效應 19
第三章 實驗製程 21
3-1 實驗儀器與藥品表 21
3-2 QDSSC製作流程及量測 23
3-2-1切割與清洗FTO玻璃基板 24
3-2-2 TTIP製作 24
3-2-3 TiO2吸收層與散射層製作 24
3-2-4以SILAR法合成Sn-Sb-S量子點 26
3-2-4-1前驅物溶液製備 26
3-2-4-2合成SnS量子點 26
3-2-4-3合成Sb2S3量子點 27
3-2-4-4熱處理 (退火) 28
3-2-5 ZnS包覆量子點材料 29
3-2-6 對電極製作 29
3-2-7 電解液製作 30
3-2-8 電池封裝 30
3-2-9 電池效率量測 31
3-3 X-光繞射 (X-ray diffraction, XRD)樣品製作 31
3-4 UV-vis吸收光譜量測之樣品製作 32
3-5 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM)樣品製作 32
第四章 結果與討論 33
4-1 SILAR合成Sn-Sb-S QDSSC最佳效率之參數分析 33
4-2 Sn-Sb-S XRD分析 34
4-3 TEM形態分析 36
4-4 改變合成Sn-Sb-S SILAR之次數 38
4-4-1 不同SILAR次數對電池效率的影響 38
4-4-2 不同SILAR次數其UV-Vis光學特性分析 40
4-5 改變Sb-S SILAR次數對電池效率的影響 42
4-6 改變Sb-S SILAR 浸泡時間對電池效率的影響 43
4-7 改變Sn-S SILAR次數對電池特性的影響 45
4-7-1 不同Sn-S SILAR次數對電池效率的影響 45
4-7-2 不同Sn-S SILAR次數其UV-Vis光學特性分析 46
4-8 改變合成Sn-Sb-S退火時間對電池效率的影響 48
4-9 不同電解液對電池效率的影響 49
4-10 利用ZnS包覆Sn-Sb-S量子點提升電池效率 50
第五章 結論 52
5-1 Sn-Sb-S 液態半導體敏化太陽能電池總結 52
5-2 未來工作 53
參考文獻 54

[1]Research Cell Efficiency Records, National Center for Photovoltaics (2016)
[2]M .Grätzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 145-153 (2003)
[3]Jebali, N. Khemiri, F. Aousgi, M. Ben Rabeh, M. Kanzari, Structural, morphological and optical properties of the sulfosalt material SnSb4S7 thin films, Materials Science in Semiconductor Processing, 27, 1057-1064 (2014)
[4]Nisar Alia, S.T. Hussain, Yaqoob Khan, Nisar Ahmad, M.A. Iqbal, Syed Mustansar Abbas, Effect of air annealing on the band gap and optical properties of SnSb2S4 thin films for solar cell application, Materials Letters, 100, 148-151 (2013)
[5]I. Gaied, A. Gassoumi, M. Kanzari, N. Yacoubi, Investigation of optical properties of the sulfosalt new absorber Sn2Sb2S5 thin films using photothermal deflection spectroscopy, Journal of Physics: Conference Series, 214, (2010)
[6]Matthieu Y. Versavel, Joel A. Haber, Structural and optical properties of amorphous and crystalline antimony sulfide thin-films, Thin Solid Films, 515, 7171-7176 (2007)
[7]Sarah Messina, M.T.S. Nair, P.K. Nair, Antimony sulfide thin films in chemically deposited thin film photovoltaic cells, Thin Solid Films, 515, 5777-5782 (2007)
[8]Sb2S5圖: http://www.3ninc.com/images/Sb2S5-2.gif from website: http://3ninc.com/ (2004 3N International, Inc)
[9]Sb2S3圖: http://davesrockshop.com/oldsite/images/stib1.jpg from website: http://davesrockshop.com/oldsite/index.htm (Dave''s Down To Earth Rock Shop)
[10]K.G. Deepa, J. Nagaraju, Development of SnS quantum dot solar cells by SILAR method, Materials Science in Semiconductor Processing, 27, 649-653 (2014)
[11]夏冬林, 徐俊, 黄波, 化學浴沉積法製備Sb摻雜SnS薄膜, 中國武漢理工大學硅酸鹽學報, 43, 1759-1764, (2015)
[12]Leonid A. Kosyachenko, Solar Cells-New Approaches and Reviews, Vienna: InTech Open Company, 303-329, (2015)
[13]周嘉玲, 國立國立中興大學碩士奈米科學所碩士論文 (2015)
[14]P. Wang, S.M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, M. Grätzel, Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals, The Journal of Physical Chemistry letters, 107, 14336-14341 (2003)
[15]Idan Hod,Victoria Gonzalez-Pedro, Zion Tachan, Francisco Fabregat-Santiago, Ivan Mora-Sero, Juan Bisquert, and Arie Zaban, Dye versus Quantum Dots in Sensitized Solar Cells: Participation of Quantum Dot Absorber in the Recombination Process, The Journal of Physical Chemistry Letters, 2, 3032-3035 (2011)
[16]S. Horea, C. Vetter, R. Kerna, H.Smit, A.Hinsch, Influence of scattering layers on efficiency of dye-sensitized solar cells, Solar Energy Materials & Solar Cells, 90, 1176-1188 (2006)
[17]S.O. Kasap: Optoelectronics and Photonics: Principles and Practices. Optoelectronics (Prentice Hall) (1999)
[18]顏志豪, 國立國立中興大學物理所碩士論文 (2013)
[19]Nelson, Jenny, The Physics of Solar cells, United Kingdom: Imperial College Press, p.2-15 (2003).
[20]Greg P. Smestad, Frederik C. Krebs, Carl M. Lampert, Claes G. Granqvist, K.L. Chopra, Xavier Mathew, Hideyuki Takakura, Reporting solar cell efficiencies in Solar Energy Materials and Solar Cells, Solar Energy Materials and Solar Cells, 92, 371-373 (2008)
[21]H. M. Pathan, C. D. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method, Bulletin of Materials Science, 27, 85-111 (2004)
[22]P.Sudhagar, E.J. Juaraz-Perez, Y.S.Kang, Ivan, Mora-Sero, Low-cost Nanomaterials: Quantum Dot-Sensitized Solar Cells, London: Springer Verlag Company (2014)
[23]O. I. Micic, H. M. Cheong, H. Fu, A. Zunger, J. R. Sprague, A. Mascarenhas, A. J. Nozik, Size-Dependent Spectroscopy of InP Quantum Dots, The Journal of Physical Chemistry B, 101, 4904-4912 (1997)
[24]C. Jackson Stolle, Taylor B. Harvey and Brian A. Korgel, Nanocrystal photovoltaics: a review of recent progress, Current Opinion in Chemical Engineering, 2, 160-167 (2013)
[25]S. H. Choi, H. Song, II. K. Park, J. H. Yum, S. S. Kim, S. Lee, Y. E. Sung, Synthesis of size-controlled CdSe quantum dots and characterization of CdSe-conjugated polymer blends for hybrid solar cells, Journal of Photochemistry and Photobiology A: Chemistry, 179, 135-141 (2006)
[26]R.G. Taylor, Geology of Tin Deposits, Vol. 11, New York: Elsevier Scientific Publishing Company, p.80, (1979)
[27]J.P. Reithmaier, P. Paunovic, W. Kulisch, C. Popov, P. Petkov, Nanotechnological Basis for Advanced Sensors, Vol.1, Berlin: Springer Science & Business Media Company, p.296, (2011)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文