(3.236.214.19) 您好!臺灣時間:2021/05/06 22:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳品錞
研究生(外文):Pin-Chun Chen
論文名稱:屠宰場及零售食品之困難腸梭菌分離株其分子流行病學特性之研究
論文名稱(外文):Molecular and Epidemiological Characterizationof Clostridium difficile Isolates from Slaughterhouse and Retail Food
指導教授:陳德陳德引用關係
口試委員:郭致榮陳志銘
口試日期:2016-06-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:微生物暨公共衛生學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:49
中文關鍵詞:困難腸梭菌屠宰場零售食品
外文關鍵詞:Clostridium difficileSlaughterhouseRetail Food
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
困難腸梭菌在人類與動物會引起抗生素相關性下痢,其中又以核醣型078所引起的社區型感染有很高的頻率。在台灣,先前的研究指出於醫院中出現了困難腸梭菌核醣型078譜系的感染,而此類型的困難腸梭菌主要存在於豬隻身上。此外,有許多的研究顯示困難腸梭菌可能是食媒性病原菌。因此,為了研究困難腸梭菌從豬隻到人類之間的關係,本實驗調查中部地區健康的人、豬隻屠宰場以及零售豬肉製品之分子流行病學特性。收集來自2015年4月到2016年4月,豬隻屠宰場的檢體(包含屠宰前豬隻體表83個、屠宰後豬隻體表92個、結腸糞便118個、大腸69個、帶皮豬肉碎塊52個以及燙毛槽中的水70個)與來自22個零售市場的檢體(包含生鮮豬皮31個、豬絞肉31個、滷豬皮35個、滷大腸30個)。在豬隻屠宰場中,以屠後豬隻體表的分離率為最高(23%, 21/92),而於燙毛槽的水中也可以發現汙染情形發生(10%, 7/70)。另外一方面,在零售市場中的分離率分別為生鮮豬皮(29%, 9/31)、豬絞肉(26%, 8/31)、滷豬皮及滷大腸(23%, 15/65)。其中,值得注意的是有44%(28/36)來自豬隻屠宰場及11%(4/38)來自零售市場所分離到的菌株是屬於核醣型078譜系(ST-11),且在MLVA(multilocus variable-number tandem-repeat analysis)的結果中顯示,從屠宰場中所分離到的菌株彼此之間有很高的遺傳相關性。另外一方面,在豬絞肉與豬大腸中皆發現核醣型127,但兩者之間的親緣關係較遠。在藥物敏感性的試驗結果中,顯示核醣型127與核醣型014比起其他核醣型的菌株而言,對moxifloxacin有更高的抗藥性。本研究顯示,在豬隻屠宰場中有嚴重的困難腸梭菌汙染情形(尤其是核醣型078)且相同的問題也存在於零售市場中的豬肉製品,這樣的情況在台灣公共衛生的層面上是一個潛在的健康危機。

Clostridium difficile causes antibiotic-associated diarrhea both in human and animals, and the ribotype 078 has a high frequency of community-associated C. difficile infection disease. In Taiwan, previous studies indicated that ribotype 078 lineage C. difficile infection emerged in hospitals and this type was dominate in pigs. Also, many studies revealed that C. difficile might be a food-borne pathogen. In order to investigate the association of C. difficile from pigs to humans, this studied the molecular epidemiological characteristics of C. difficile in healthy human, porcine slaughterhouse, retail meat, and the meals in Taichung.Samples from a porcine slaughterhouse (including hide, n=83; carcasses, n=92; feces, n=118; colon, n=69; belly, n=52 and water of scalding tanks, n=70), 22 retail markets (including skin, n=31; ground pork,n=31; ready-to-eat of skin, n=35 and ready-to-eat of colon, n=30) were collected from Apr. 2015 to Apr. 2016. In the slaughterhouse, the isolation rate of carcass sample was high (23%, 21/92). Also, the water from scalding tank was seriously contaminated by C. difficile (10%, 7/70). Regarding the retail markets, the isolation rates of skin, ground pork, and the meals (ready-to-eat) samples were 29% (9/31), 26% (8/31), and 23% (15/65), respectively. Notably, 44% (28/63, form the slaughterhouse) and 11% (4/38, from retail market) of C. difficile isolates were ribotype 078, ST-11.The result of multilocus variable-number tandem-repeat analysis showed that the closely genetic relatedness among the isolates from the slaughterhouse. On the other hand, ribotype 127 isolates were found in ground pork and porcine colon, but shown to be genetically distantly related. Ribotype 127, and ribotype 014 isolates exhibited higher moxifloxacin resistance than other ribotypes inantibiotics susceptibility test.This study indicated that the serious C. difficile and especially ribotype 078 contamination occurred in porcine slaughterhouse, and the same issue was found in meat products in retail markets. This situation poses a potential public healththreat in Taiwan.

第一章文獻探討 1
第一節 困難腸梭菌 1
第二節 流行病學研究 3
第三節 診斷方法之探討 4
第四節 分子分型方法之探討 5
第五節 台灣現況 6
第六節 研究動機與目的 6
第二章 材料與方法 8
第一節 實驗流程 8
第二節 採樣 8
第三節 細菌培養 9
第四節 分子生物學診斷 10
第五節 藥物敏感性試驗 12
第六節 分子分型 12
第三章實驗結果 16
第一節 微生物分離與分子診斷學結果 16
第二節 藥物敏感性試驗結果 16
第三節 人類來源菌株與豬來源菌株之比較 17
第四節 分子分型結果 17
第四章討論 19
第一節 困難腸梭菌之分離率、毒力基因之結果比較 19
第二節 影響困難腸梭菌分離率之因子 21
第三節 抗藥性問題 22
第四節 人畜共通傳染病之疑慮 22
第五章總結 23
第六章參考文獻 43


蔡文城。2011。厭氧菌之抗生素感受性試驗。引自:實用臨床微生物診斷學。台北,九州圖書文物有限公司,第1787-1808頁。
劉宜芬。2013。台灣豬隻困難腸梭菌盛行率與流行病學之研究[碩士論文]。
台中,國立中興大學,第ii頁。
Aspinall, S. T., & Hutchinson, D. N. (1992). New selective medium for isolating Clostridium difficile from faeces. J Clin Pathol, 45(9), 812-814.
Bartlett, J. G. (2010). Clostridium difficile: progress and challenges. Ann N Y Acad Sci, 1213, 62-69. doi: 10.1111/j.1749-6632.2010.05863.x
Bliss, D. Z., Johnson, S., Clabots, C. R., Savik, K., & Gerding, D. N. (1997). Comparison of cycloserine-cefoxitin-fructose agar (CCFA) and taurocholate-CCFA for recovery of Clostridium difficile during surveillance of hospitalized patients. Diagn Microbiol Infect Dis, 29(1), 1-4.
Bloedt, K., Riecker, M., Poppert, S., & Wellinghausen, N. (2009). Evaluation of new selective culture media and a rapid fluorescence in situ hybridization assay for identification of Clostridium difficile from stool samples. J Med Microbiol, 58(Pt 7), 874-877. doi: 10.1099/jmm.0.009811-0
Brazier, J. S. (1998). The diagnosis of Clostridium difficile-associated disease. J Antimicrob Chemother, 41(suppl 3), 29-40. doi: 10.1093/jac/41.suppl_3.29
Brazier, J. S., Borriello, S.P. (2000). Microbiology, epidemiology and diagnosis of Clostridium difficile infection. In: Aktories K, Wilkins TD. Clostridium difficile. New York, Springer Publishing, 18-34.
Buchanan, A. G. (1984). Selective enrichment broth culture for detection of Clostridium difficile and associated cytotoxin. J Clin Microbiol, 20(1), 74-76.
Carman, R. J., Stevens, A. L., Lyerly, M. W., Hiltonsmith, M. F., Stiles, B. G., & Wilkins, T. D. (2011). Clostridium difficile binary toxin (CDT) and diarrhea. Anaerobe, 17(4), 161-165. doi: 10.1016/j.anaerobe.2011.02.005
Chung, C. H., Wu, C. J., Lee, H. C., Yan, J. J., Chang, C. M., Lee, N. Y., Ko, W. C. (2010). Clostridium difficile Infection at a Medical Center in Southern Taiwan: Incidence, Clinical Features and Prognosis. J Microbiol Immunol Infect, 43(2), 119-125. doi: 10.1016/S1684-1182(10)60019-9
Citron, D. M., Ostovari, M. I., Karlsson, A., & Goldstein, E. J. (1991). Evaluation of the E test for susceptibility testing of anaerobic bacteria. J Clin Microbiol, 29(10), 2197-2203.
Clabots, C. R., Bettin, K. M., Peterson, L. R., & Gerding, D. N. (1991). Evaluation of cycloserine-cefoxitin-fructose agar and cycloserine-cefoxitin-fructose broth for recovery of Clostridium difficile from environmental sites. J Clin Microbiol, 29(11), 2633–2635.
Clabots, C. R., Gerding, S. J., Olson, M. M., Peterson, L. R., & Gerding, D. N. (1989). Detection of asymptomatic Clostridium difficile carriage by an alcohol shock procedure. J Clin Microbiol, 27(10), 2386-2387.
Centers for Disease Control and Prevention.(2012). Making health care safer: stopping C. difficile infections. [Internet] Centers for Disease Control and Prevention. Available from http://www.cdc.gov/vitalsigns/hai.
Delmée, M. (2001). Laboratory diagnosis of Clostridium difficile disease. Clinical Microbiology and Infection, 7(8), 411-416. doi: 10.1046/j.1198-743x.2001.00294.x
Dhalluin, A., Lemée, L., Pestel-Caron M, Mory, F., Leluan, G., Lemeland, J.F., Pons, J.L. (2003). Genotypic differentiation of twelve Clostridium species by polymorphism analysis of the triosephosphate isomerase (tpi) gene. Syst Appl Microbiol 26(1): 90-96.
Dubberke, E. R., Haslam, D. B., Lanzas, C., Bobo, L. D., Burnham, C. A., Grohn, Y. T., & Tarr, P. I. (2011). The ecology and pathobiology of Clostridium difficile infections: an interdisciplinary challenge. Zoonoses Public Health, 58(1), 4-20. doi: 10.1111/j.1863-2378.2010.01352.x
Freeman, J., Bauer, M. P., Baines, S. D., Corver, J., Fawley, W. N., Goorhuis, B., . . . Wilcox, M. H. (2010). The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev, 23(3), 529-549. doi: 10.1128/CMR.00082-09
George, W. L., Sutter, V. L., Citron, D., & Finegold, S. M. (1979). Selective and differential medium for isolation of Clostridium difficile. J Clin Microbiol, 9(2), 214–219.
Gonçalves, C., Decré, D., Barbut, F., Burghoffer, B., Petit, J.C. (2004). Prevalence and characterization of a binary toxin (actin-specific ADP-ribosyltransferase) from Clostridium difficile. J Clin Microbiol 42(5): 1933-1939.
Gerding, D. N., Muto, C. A., & Owens, R. C., Jr. (2008). Treatment of Clostridium difficile infection. Clin Infect Dis, 46 Suppl 1, S32-42. doi: 10.1086/521860
Goldstein, E. J., Citron, D. M., Goldman, P. J., & Goldman, R. J. (2008). National hospital survey of anaerobic culture and susceptibility methods: III. Anaerobe, 14(2), 68-72. doi: 10.1016/j.anaerobe.2008.01.001
Griffiths, D., Fawley, W., Kachrimanidou, M., Bowden, R., Crook, D.W.,Fung, R., Golubchik, T., Harding, R.M., Jeffery, M., Jolley, K.A., Kirton, R.,Peto, T.E., Rees, G., Stoesser, N., Vaughan, A., Walker, A.S., Young, B.C.,Wilcox, M., Dingle, K.E. (2010). Multilocus sequence typing of Clostridiumdifficile. J. Clin. Microbiol. 48, 370-378.
Hung,Y.P., Tsai,,P..J.., Hung, K.H., Liu,H.C., Lee,C.I., Lin,H.J., Wu,Y.H., Wu,J.J., Ko, W.C. (2012). Impact of toxigenic Clostridium difficile colonization and infection among hospitalized adults at a district hospital in southern Taiwan.PLoS One 7(8): e42415.
Hensgens, M.P., Keessen, E.C., Squire, M.M., Riley, T.V., Koene, M.G., de Boer, E., Lipman, L.J., Kuijper, E.J. (2012). Clostridium difficile infection in the community: a zoonotic disease? Clin Microbiol Infect 18(7): 635-645.
Hill, K. A., Collins, J., Wilson, L., Perry, J. D., & Gould, F. K. (2013). Comparison of two selective media for the recovery of Clostridium difficile from environmental surfaces. J Hosp Infect, 83(2), 164-166. doi: 10.1016/j.jhin.2012.10.006
Janezic, S., Rupnik, M. (2010). Molucular typing methods for Clostridium difficile: pulsed-field gel electrophoresis and PCR ribotyping. In: Mullany P, Roberts AP. Clostridium difficile: methods and protocols. New York, Humana Press, 55-76.
Jobstl, M., Heuberger, S., Indra, A., Nepf, R., Kofer, J., & Wagner, M. (2010). Clostridium difficile in raw products of animal origin. Int J Food Microbiol, 138(1-2), 172-175. doi: 10.1016/j.ijfoodmicro.2009.12.022
Kelly, C. P., & LaMont, J. T. (2008). Clostridium difficile — More Difficult Than Ever. N Engl J Med, 359, 1932-1940. doi: 10.1056/NEJMra0707500
Koru, O., & Ozyurt, M. (2008). Determination of antimicrobial susceptibilities of clinically isolated anaerobic bacteria by E-test, ATB-ANA and agar dilution. Anaerobe, 14(3), 161-165. doi: 10.1016/j.anaerobe.2008.02.004
Kuehne, S. A., Cartman, S. T., Heap, J. T., Kelly, M. L., Cockayne, A., & Minton, N. P. (2010). The role of toxin A and toxin B in Clostridium difficile infection. Nature, 467(7316), 711-713. doi: 10.1038/nature09397
Keessen, E.C., van den Berkt, A.J., Haasjes, N.H., Hermanus, C., Kuijper, E.J., Lipman LJ (2011). The relation between farm specific factors and prevalence of Clostridium difficile in slaughter pigs. Vet Microbiol 154(1-2): 130-134
Koene, M.G., Mevius, D., Wagenaar, J.A., Harmanus, C., Hensgens, M.P., Meetsma, A.M., Putirulan, F.F.,Bergen, M.A., Kuijper, E.J. (2012). Clostridium difficile in Dutch animals: their presence, characteristics and similarities with human isolates. Clin Microbiol Infect 18(8): 778-784.
Lemee, L., Dhalluin, A., Testelin, S., Mattrat, M.A., Maillard, K., Lemeland, J.F., Pons, J.L.(2004). Multiplex PCR targeting tpi (triose phosphate isomerase), tcdA (toxin A), and tcdB (toxin B) genes for toxigenic culture of Clostridium difficile.J Clin Microbiol 42(12): 5710-5714.
Lefebvre, S.L., Arroyo, L.G., Weese, J.S. (2006). Epidemic Clostridium difficile strain in hospital visitation dog.Emerg Infect Dis 12(6): 1036-1037
Lee, Y. C., Wang, J. T., Chen, A. C., Sheng, W. H., Chang, S. C., & Chen, Y. C. (2012). Changing incidence and clinical manifestations of Clostridium difficile-associated diarrhea detected by combination of glutamate dehydrogenase and toxin assay in Northern Taiwan. J Microbiol Immunol Infect, 45(4), 287-295. doi: 10.1016/j.jmii.2011.12.001
Lin, Y. C., Huang, Y. T., Lee, T. F., Lee, N. Y., Liao, C. H., Lin, S. Y., Hsueh, P. R. (2013). Characteristics of patients with Clostridium difficile infection in Taiwan. Epidemiol Infect, 141(10), 2031-2038. doi: 10.1017/S0950268812002749
McClane, B.A., Rood,J.I (2001). Clostridial toxins involved in human enteric and histotoxic infections. In: Bahl H, Durre P. Clostridia: biotechnology and medical applications. Weinheim, Wiley-VCH Verlag GmbH, 181-187.
Marina, M., Ivanova, M., & Kantardjiev, T. (2009). Antimicrobial susceptibility of anaerobic bacteria in Bulgaria. Anaerobe, 15(4), 127-132. doi: 10.1016/j.anaerobe.2009.03.002
Metcalf, D., Reid-Smith, R.J., Avery, B.P., Weese, J.S. (2010).Prevalence of Clostridium difficile in retail pork.Can Vet J 51(8): 873-876.
Norman, K. N., Harvey, R. B., Scott, H. M., Hume, M. E., Andrews, K., & Brawley, A. D. (2009). Varied prevalence of Clostridium difficile in an integrated swine operation. Anaerobe, 15(6), 256-260. doi: 10.1016/j.anaerobe.2009.09.006
O’Neill,G.,Adams,J.E.,Bowman,R.A., Riley, T.V. (1993). A molecular characterization of Clostridium difficile isolates from humans, animals and their environments. Epidemiol Infect 111(2): 257-264
Perelle, S., Gibert, M., Bourlioux, P., Corthier, G., Popoff, M.R. (1997).Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196.Infect Immun 65(4): 1402-1407.
Pelaez, T., Cercenado, E., Alcala, L., Marin, M., Martin-Lopez, A., Martinez-Alarcon, J., Bouza, E. (2008). Metronidazole resistance in Clostridium difficile is heterogeneous. J Clin Microbiol, 46(9), 3028-3032. doi: 10.1128/JCM.00524-08
Persson, S., Torpdahl, M., Olsen, K.E. (2008). New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin Microbiol Infect 14(11): 1057-1064.
Pirs, T., Ocepek, M., & Rupnik, M. (2008). Isolation of Clostridium difficile from food animals in Slovenia. J Med Microbiol, 57(Pt 6), 790-792. doi: 10.1099/jmm.0.47669-0
Renate, J. van den Berg,Schaap, I. , Templeton, K.E. , Klaassen, C.H. , Kuijper, E.J.(2007).Typing and subtyping of Clostridium difficile isolates by using multiple-locus variable-number tandem-repeat analysis. J Clin Microbiol,45(3),1024-1028.
Rodriguez, C., Avesani, V., Van Broeck, J., Taminiau, B., Delmee, M., & Daube, G. (2013). Presence of Clostridium difficile in pigs and cattle intestinal contents and carcass contamination at the slaughterhouse in Belgium. Int J Food Microbiol, 166(2), 256-262. doi: 10.1016/j.ijfoodmicro.2013.07.017
Rupnik, M., Grabnar, M., Geric, B. (2003).Binary toxin producing Clostridium difficile strains. Anaerobe 9(6): 289-294.
Rupnik, M., Wilcox, M. H., & Gerding, D. N. (2009). Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol, 7(7), 526-536. doi: 10.1038/nrmicro2164
Songer, J. G., Post, K. W., & Larson, D. J. (2000).Infection of neonatal swine with Clostridium difficile. Swine Health Prod, 8(4), 185-189.
Songer, J. G., Trinh,H.T., Killgore,G.E., Thompson,A.D., McDonald,L.C., Limbago, B.M. (2009).Clostridium difficile in retail meat products, USA, 2007.Emerg Infect Dis 15(5): 819-821.
Spiegel, C.A. (2005). Anaerobes. In: Coyle MB. Manual of antimicrobial susceptibility testing. Washington DC, American society for microbiology, 197-204.
Spigaglia, P.,Cardines, R.,Rossi, S., Menozzi, M.G., Mastrantonio, P. (2001). Molecular typing and long-term comparison of Clostridium difficile strains by pulsed-field gel electrophoresis and PCR-ribotyping. J Med Microbiol 50(5): 407-414.
Teng, L.J., Hsueh, P.R., Tsai, J.C., Liaw, S.J., Ho, S.W., Luh, K.T. (2002). High incidence of cefoxitin and clindamycin resistance among anaerobes in Taiwan. Antimicrob Agents Chemother 46(9): 2908-2913
Thakur, S., Putnam, M., Fry, P. R., Abley, M., & Gebreyes, W. A. (2010). Prevalence of antimicrobial resistance and association with toxin genes in Clostridium difficile in commercial swine. Am J Vet Res, 71(10), 1189-1194. doi: 10.2460/ajvr.71.10.1189
Van, B. A. (2002). Molecular typing of micro-organisms: at the centre of diagnostics, genomics and pathogenesis of infectious diseases? J Med Microbiol, 51(1), 7-10. doi: 10.1099/0022-1317-51-1-7
Wilkins, T.D., Lyerly, D.M. (2003). Clostridium difficile testing: after 20 years, still challenging. J Clin Microbiol 41(2): 531-534.
Warny, M., Pepin, J., Fang, A., Killgore, G., Thompson, A., Brazier, J., McDonald, L. C. (2005). Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. The Lancet, 366(9491), 1079-1084. doi: 10.1016/s0140-6736(05)67420-x
Wilson, K. H., Kennedy, M. J., & Fekety, F. R. (1982). Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile. J Clin Microbiol, 15(3), 443-446.
Wu, Y. C., Lee, J. J., Tsai, B. Y., Liu, Y. F., Chen, C. M., Tien, N., . . . Chen, T. H. (2016). Potentially hypervirulent Clostridium difficile PCR ribotype 078 lineage isolates in pigs and possible implications for humans in Taiwan. Int J Med Microbiol, 306(2), 115-122. doi: 10.1016/j.ijmm.2016.02.002

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔