(3.238.96.184) 您好!臺灣時間:2021/05/18 16:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉欣茹
研究生(外文):Hsin-Ju Liu
論文名稱:以微脂體包覆電腦斷層影像顯影劑對腫瘤診斷及預防腎病變之影響
論文名稱(外文):Influence of contrast medium encapsulated by liposome in lesion diagnosis and nephropathy prevention with computed tomography
指導教授:廖國智廖國智引用關係
指導教授(外文):Kuo-Chih Liao
口試委員:溫曉薇蔡志文
口試委員(外文):Hsiao-Wei WenJyn-Wen Chai
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:58
中文關鍵詞:微脂體預防顯影劑誘發腎病變腫瘤良惡性診斷
外文關鍵詞:LiposomeContrast mediaBiliary excretionComputer tomographyBenign and malignant screening
相關次數:
  • 被引用被引用:0
  • 點閱點閱:50
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電腦斷層影像是目前臨床廣泛使用的診斷工具,具有非侵入性、檢測快速等優點。含碘顯影劑的使用可增加血管結構和器官等軟組織對X-ray的吸收度,為電腦斷層顯影更清楚呈現病灶狀況。然而臨床使用含碘顯影劑為親水性,依賴腎臟代謝,容易因為顯影劑過度累積造成腎臟過大負擔,尤其對於糖尿病、腎功能不全患者等特殊族群誘發腎病變風險上升至30-50%。因此本研究探討以長效循環微脂體包覆顯影劑預防含碘顯影劑誘發腎病變效能和可提升顯影劑進入癌組織,並達成提升診斷良、惡性腫瘤效率。
長效型微脂體(DSPC : SoyPC : Chol : DSPE-PEG2k = 54 : 27 :16 : 6)製備成粒徑200 nm微脂體包覆顯影劑(Xenetix、Urografin)。由於微脂體為以含疏水端磷脂質為基礎形成之奈米結構,此藥物載體代謝具經由肝膽路徑(取代親水性顯影劑經腎臟代謝為主)之可能性。由細胞實驗結果指出,當顯影劑濃度超過20mgI/mL時,腎、肝臟細胞存活度明顯下降,但是,微脂體包覆20mgI/mL顯影劑有效減低腎、肝細胞死亡率分別約48及66%。
動物實驗以鏈脲佐菌素(streptozocin)誘發大鼠糖尿病,再施打誘發腎病變劑量3700mgI/kg Urografin(分為純顯影劑組和微脂體包覆組),以電腦斷層顯影觀察各器官於不同時間點相對應累積顯影劑情形,以及血液生化數值變化。由電腦斷層影像結果發現,純顯影劑在注射後30分鐘於腎臟位置達顯影峰值(相當於約92.8mgI/mL),相較之下,微脂體包覆顯影劑在注射20分鐘後達顯影峰值,最高累積劑量僅46.4mgI/mL。由心臟部位顯影可觀察到微脂體包覆顯影劑可延長顯影增強達24小時,;由肝臟部位顯影和三維影像發現微脂體包覆可增強肝膽路徑代謝。以血液生化指數分析確認代謝路徑改變對肝功能影響,純顯影劑注射後48小時後肌肝酸數值與對照組值統計上無顯著差異谷丙轉氨酶(alanine aminotransferase)上升52%,但是微脂體包覆顯影劑注射後肌肝酸數值與對照組值統計上無顯著差異。
藉由大鼠良、惡性自發腫瘤(良性纖維腺瘤及惡性乳腺癌)觀察臨床劑量顯影劑在腫瘤判別上的影響。本實驗使用電腦斷層儀器主要為人體使用,在大鼠腫瘤部位較難判斷其顯影特徵(包含不規則形狀、不規則的邊緣及邊緣增強)。而在增加顯影劑累積癌組織部分,觀察到微脂體包覆顯影劑可使腫瘤組織產生較長時間顯影,至注射後2小時仍出現顯影。


Medical imaging is extensively applied in the diagnosis and management of cancer for the benefit of non-invasive and real-time monitoring. For computed tomography (CT), the imaging diagnosis are usually enhanced with iodinated contrast media. However, conventional clinical iodinated contrast media are hydrophilic, whose clearance relied majorly through kidney and excreted in urine. For patient with chronic conditions such as diabetes or renal dysfunction, the risk of contrast media induced nephropathy (CIN) increased dramatically to 30-50%. The study investigated the influence of encapsulation of contrast media in long circulating liposome in preventing CIN and increasing screening efficiency in lesion malignancy screening.
Contrast medium (Xenetix or Urografin) were encapsulated in 200nm long-term circulation liposome (DSPC: soyPC: Chol: DSPE-PEG2k = 54: 27: 16: 6). Liposome is composed of phospholipid with hydrophobic tail and arranged as nanostructure vesicle. The delivery of contrast medium by liposome has the potential to reroute the hydrophilic contrast medium clearance from renal pathway (with the risk of nephropathy induction) biliary excretion. Additionally, liposome encapsulation can increase contrast medium circulation life-time in vivo and tumor specific accumulation. From in vitro cell culture study, contrast medium exceeding 20mg iodine/mL caused significant viability reduction for both kidney and liver cell lines. However, liposome encapsulation restore cell viabilities by 48% for kidney cells and 66% for liver cells.
In vivo contrast medium biodistribution and accumulation dosage were studied with streptozocin induced diabetes rat, and observed with CT imaging after 3700mg iodine/kg CM or CM/liposome injection. Contrast enhancement by pure form contrast medium achieved peak value around 30 minutes after administration (with accumulated dosage around 92.8 mg I/ml). On the other hand, contrast enhancement by liposome encapsulated contrast medium achieved peak value around 20 minutes after administration, while with accumulated dosage only up to 46.4 mg I/ml. From biochemistry analysis for verifying the impact of clearance pathway change, it is found that pure form contrast medium caused 52% increase of alanine aminotransferase activity 48 hours after administration, while liposome encapsulated contrast medium resulted in insignificant increase of alanine aminotransferase activity compared to control group.


中文摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 引言 1
1.1動機:微脂體-應用於電腦斷層診斷 1
1.2目的 2
1.2.1預防電腦斷層(DCE-MDCT)顯影劑誘發腎病變 2
1.2.2提升腫瘤良、惡性診斷效率 5
1.3研究背景 5
1.3.1微脂體配方最適化 5
1.3.2微脂體粒徑最適化 6
1.4論文架構 7
1.4.1 預防顯影劑誘發急性腎病變 8
1.4.2 提升診斷效能 8
第二章 文獻探討 9
2.1微脂體的介紹與應用 9
2.1.1微脂體介紹 9
2.1.2微脂體構造 9
2.1.3 磷脂質相轉移溫度 13
2.2電腦斷層判斷良惡性腫瘤指標 14
2.2.1 靜態指標判斷良惡性腫瘤 14
2.2.2 動態指標判斷良惡性腫瘤 15
2.2.3 腫瘤組織的高滲透長滯留效應促進微脂體進入 16
2.3顯影劑誘發腎病變特徵與機制 17
2.3.1 急性腎病變臨床病徵 17
2.3.2急性腎病變誘發機制 17
2.3.3 微脂體包覆避免顯影劑接觸組織造成物理或化學傷害 18
2.3.4 微脂體包覆顯影劑改變代謝途徑為肝膽代謝 18
第三章 實驗材料與方法 20
3.1實驗設計架構 20
3.2材料與藥品 21
3.3儀器設備 23
3.4藥品配製 24
3.4.1磷酸鹽緩衝溶液配製 24
3.4.2F12K細胞培養液配製 24
3.4.3HG-DMEM細胞培養液配製 24
3.4.4脂質含量檢測溶液配製 25
3.4.5 Streptozotocin糖尿病誘發溶液配製 26
3.5微脂體劑型顯影劑製備 26
3.6微脂體樣本脂質含量分析 28
3.7微脂體包覆顯影劑包覆率分析 29
3.8細胞培養 30
3.9顯影劑對細胞活性測試 30
3.9.1不同顯影劑濃度對細胞活性測試 31
3.9.2微脂體包覆顯影劑對細胞活性測試 31
3.10 STZ溶液誘發糖尿病大鼠模型 32
3.11以微脂體包覆顯影劑動物實驗 32
3.11.1電腦斷層影像評估 33
3.11.2大鼠血液生化數值評估 33
第四章 結果與討論 34
4.1微脂體包覆率測定 34
4.2微脂體脂質含量分析 35
4.3顯影劑對細胞活性測試 35
4.4微脂體包覆顯影劑對細胞活性測試 38
4.5微脂體包覆顯影劑在大鼠肝腎累積劑量 41
4.6大鼠血液生化數值分析 44
4.7微脂體包覆顯影劑在提升診斷效能分析 45
4.7.1裸鼠腫瘤模型 45
4.7.2大鼠解剖診斷 47
4.7.3顯影劑判讀良、惡性腫瘤特徵及肝腎累積分析 51
第五章 結論 53
第六章 參考文獻 55


[1]Zhang L, Gu F.X, Chan J.M, Wang A.Z, Langer R.S, Farokhzad O.C, Nanoparticles in medicine: therapeutic applications and developments , Clin Pharmacol Ther, 83:761–769, 2008.
[2]Nash K, Hafeez A, Hou S. Hospital-acquired renal insuf- ficiency. Am J Kidney Dis 2002;39:930–6
[3] Mehran R, Nikolsky . Contrast-induced nephropathy: definition, epidemiology, and patients at risk, Kidney Int Suppl. 2006 Apr;(100):S11-5.
[4] Mulder W.J, Strijkers G.J, Habets J.W, Bleeker E.J, van der Schaft D.W, Storm G, Koning G.A, Griffioen A.W, Nicolay K. MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J. 19, 2008-2010, 2005.
[5]Fattahi H, LaurentS, Liu F, Arsalani N, Vander Elst L, Muller R.N. Magnetoliposomes as multimodal contrast agents for molecular imaging and cancer nanotheragnostics. Nanomedicine 6(3), 529-44, 2011.
[6] Na K, Lee SA, Jung SH, Shin BC. Gadolinium-based cancer therapeutic liposomes for chemotherapeutics and diagnostics. Colloids Surf B Biointerfaces. 84(1), 82-87, 2011.
[7] O''Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, Catane R, Kieback DG, Tomczak P, Ackland SP, Orlandi F, Mellars L, Alland L, Tendler C; CAELYX Breast Cancer Study Group. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first –line treatment of metastatic breast cancer, Annals of Oncology, 15: 440–449,2004.
[8] A. N. Gordon, J. T. Fleagle, D. Guthrie, D. E. Parkin, M. E. Gore, A. J. Lacave, 56 Recurrent Epithelial Ovarian Carcinoma: A Randomized Phase III Study of Pegylated Liposomal Doxorubicin Versus Topotecan, Journal of Clinical Oncology , 19:3312–3322, 2001.
[9] O. Lyass, B. Uziely, R. Ben-Yosef, D. Tzemach, N. I. Heshing, M. Lotem , G. Brufman, A. Gabizon, Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma, Cancer. , 89:1037–1047, 2000.
[10]M. Inoue, T. Sano, R. Watai, R. Ashikaga, K. Ueda, M. Watatani, Y. Nishimura, Dynamic multidetector CT of breast tumors: diagnostic features and comparison with conventional techniques, American Journal of Roentgenology, 181:679–686, 2003.
[11] A.D. Bangham, M.M. Standish, J.C. Watkins,”Diffusion of univalent ions across the lamellae of swollen phospholipids”, Journal of Molecular Biology | Vol 13, Iss 1, Pgs 238-252
[12] Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K,” Liposome: classification, preparation, and applications.” Nanoscale Res Lett. 2013; 8(1): 102.
[13] Giulia Bonacucina, Marco Cespi, Monica Misici-Falzi, Giovanni F. Palmieri “Colloidal Soft Matter as Drug Delivery System.” Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jps.21423
[14] Yu-Cheng Chang, Effect of liposome formula and size in contrast medium induced nephropathy prevention and lesion malignancy diagnosis with computed tomography, 2015
[15] S. Freeman, Lipids, membranes, and the first cells, Biological science. 6, 101-108, 2011
[16] F. Frezard, D. A. Schettini, O. G. F. Rocha, C. Demicheli, Liposomes: physicochemical and pharmacological properties, applications in antimony-based chemotherapy, Quimica Nova. 28, 511-218, 2005
[17]R. R. C. New, ”liposome:a practical approach”, Oxford University press, New York,1990
[18]J. N. Israelachvili, Intermolecular and Surface Force. Academic Press, Lodon, 1992.
[19]M. G. Harish , S. D. Konda, H. M. Mahon, G. M. Newstead, Breast lesions
incidentally detected with CT: what the general radiologist needs to know,
Radiographics. 27 Suppl 1, S37-51, 2007
[20] M. Inoue, T. Sano, R. Watai, R. Ashikaga, K. Ueda, M. Watatani, Y. Nishimura, Dynamic multidetector CT of breast tumors: diagnostic features and comparison with conventional techniques, American Journal of Roentgenology. 181, 679–686 (2003)
[21] G. Bergers, L. E. Benjamin, Tumorigenesis and the angiogenic switch, Nature Reviews Cancer. 3, 401–410, 2003
[22] P. Armitage, C. Behrenbruch, M. Brady, N. Moore, Extracting and visualizing physiological parameters using dynamic contrast-enhanced magnetic resonance imaging of the breast, Medical Image Analysis. 9, 315–329, 2005
[23]T. G. Gleeson, S. Bulugahapitiya, Contrast-Induced Nephropathy, American Journal of Roentgenology, 183: 1673–1689, 2004.
[24]R. Mehran, E. Nikolsky, Contrast-induced nephropathy: definition, epidemiology, and patients at risk, Kidney International Supplements, 69:511–515, 2006.
[25]C. Briguori, D. Tavano, A. Colombo, Contrast agent –associated nephrotoxicity, Progress in Cardiovascular Diseases, 445:493–503, 2003.
[26] Rakesh K. Jain , Triantafyllos Stylianopoulos ,Delivering nanomedicine to solid tumors, Nature Reviews Clinical Oncology 7, 653-664 , 2010
[27] Bozzuto G, Molinari A ,Liposomes as nanomedical devices, International Journal of Nanomedicine,10:975-999, 2015
[28]Y. P. Liu , R. Song, C. h. Liang , X. Chen, B. Liu, Arterial spin labeling blood flow magnetic resonance imaging for evaluation of renal injury, American Journal of Physiology. 303, 551-558, 2012
[29] S. N. Heyman, S. Rosen, C. Rosenberger, Renal parenchymal hypoxia, hypoxia adaptation, and the pathogenesis of radiocontrast nephropathy, Clin J Am Soc Nephrol.3, 288-96, 2008
[30] G. Romano, C. Briguori, C. Quintavalle, C. Zanca, N. V. Rivera, A. Colombo, G. Condorelli, Contrast agents and renal cell apoptosis, European Heart Journal, 20:2569–2576, 2008
[31]Philips CT Scanner http://www.philipsctscanner.com/


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top