跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王政柏
研究生(外文):Cheng-Po Wang
論文名稱:快速視覺化血型檢測晶片
論文名稱(外文):Rapid and Visible Blood Typing Devices
指導教授:陳建甫陳建甫引用關係
指導教授(外文):Chien-Fu Chen
口試委員:林宗宏林淑萍
口試日期:2016-06-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生醫工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:38
中文關鍵詞:微流體元件熱塑性塑膠血型檢測微過濾器微混和器
外文關鍵詞:microfluidics devicethermoplasticblood typing detectionmicro mixermicro filter.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究實現快速拋棄式比色血型檢測分析元件,主要係使用熱塑性塑膠環烯烴共聚物基材作為基底,並整合手動式幫浦、微型混和器和微狹縫過濾器於元件中,幫浦係採用市售螺絲或是加工過非尖銳的注射針筒,藉由螺絲轉動驅動來分別將抗體置入於元件中,以及抽取注射針筒產生之壓力,以驅動微流道內部血液的流動,與先前置放相對應抗體經由微混合器相互快速作用,讓血液中的紅血球產生凝集反應,再接著於利用紫外光臭氧表面改質處理與溶劑接合方式所產生一約2 μm高的狹窄微流道之微型過濾器前,凝集反應的紅血球細胞將會被過濾阻擋於狹縫前,在流道中形成一紅色線段,因此血型可以直接透過肉眼進行觀察。
本研究提出的檢測分析平臺已成功達到快速檢測、高靈敏度等特點,只需要1 μL的血液量,並在1分鐘內能夠觀察到血液凝集現象,以得知血型結果,此外,研究也進行稀有血型測式,包含A、B亞型血型、多血型、以及地中海貧血等,除了成功判斷不易診斷之弱凝結血液之血型外,也證實在微流到中可藉由凝結血液所形成之長度,獲得上述血液疾病的診斷依據,提供有別於既有的血液疾病診斷平臺外的一種判別方式。此外,紙張與玻璃試片反應也在此研究中同時測試血液凝結反應結果,以凸顯本塑膠基底血型元件之獨特性。


In this study, a disposable colorimetric detection platform for rapid blood grouping has been developed. A screw pump, low-aspect-ratio filters and micromixers are integrated in the polymeric chip system. Commercial available screw or syringe will be used as the pressure source to actuate the antibodies and blood flow in a microfluidic channel followed by rapid interacting through embedded chaotic micromixers. The coagulated red blood cells are then blocked at low-aspect-ratio filters fabricated using selective solvent swelling method and showed as a red line. The ABO and RH blood group tests can be directly observed by the naked eye without external equipment. As a result, the required amount of blood is only 1 μL, and unambiguous result can be obtained within one minute. In addition, weakly interacting blood groups such as A3 (subgroups of A), B3 (subgroups of B), and patients with Plethora or thalassemia are successfully verified in this study. Moreover, the length of blocked agglutinated red blood cell lines can be used as an indicator for these abovementioned blood diseases. Meanwhile, paper-based analytical device and glass slide method will also be tested for blood typing comparison in this study.

摘要.......................i
Abstract..................ii
目錄.......................iii
圖目錄.......................v
表目錄......................vi
第一章 前言.................1
1.1研究動機...................1
1.2文獻回顧....................4
1.2.1微流體系統................4
1.2.2高分子聚合物 ..............6
1.2.3微混和器..................9
1.2.4紫外光臭氧表面處理.........10
1.2.5晶片溶劑接合 ..............11
1.2.6微型幫浦..................14
1.2.7血型檢測系統分析...........15
第二章 實驗材料與方法............17
2.1實驗藥品與材料 ...............17
2.2儀器設備.....................18
2.3晶片製備.....................19
2.3.1蜿蜒流道晶片................19
2.3.2微混和器....................19
2.3.3螺紋針頭....................20
2.3.4紫外光臭氧表面處理...........20
2.3.5晶片溶劑接合 ................20
2.3.6觀察紫外線臭氧表面處理產生微小狹縫..........21
2.3.7各層晶片設計......................21
2.4針筒幫浦耐壓測試............................23
2.5單一流道血型測試..................24
2.6玻片法檢測.........................24
2.7層析紙張測試........................24
2.8血型檢測晶片測試流程..................25
第三章 實驗結果與討論...................26
3.1 COP塑膠基材紫外光臭氧改質處理.........26
3.2針筒幫浦耐壓測試.....................26
3.3單一流道血型晶片.....................27
3.4 玻片法檢測...........................28
3.5層析紙張測試......................30
3.6血型檢測晶片...........................31
第四章 結論...............................32
參考文獻...................................34


[1]P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, et al., "Microfluidic diagnostic technologies for global public health," Nature, vol. 442, pp. 412-418, 2006.
[2]D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, "Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications," Chemical Society Reviews, vol. 39, pp. 1153-1182, 2010.
[3]V. Srinivasan, V. K. Pamula, and R. B. Fair, "An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids," Lab on a Chip, vol. 4, pp. 310-315, 2004.
[4]L. Lafleur, D. Stevens, K. McKenzie, S. Ramachandran, P. Spicar-Mihalic, M. Singhal, et al., "Progress toward multiplexed sample-to-result detection in low resource settings using microfluidic immunoassay cards," Lab on a Chip, vol. 12, pp. 1119-1127, 2012.
[5]A. Arora, G. Simone, G. B. Salieb-Beugelaar, J. T. Kim, and A. Manz, "Latest developments in micro total analysis systems," Analytical chemistry, vol. 82, pp. 4830-4847, 2010.
[6]J. Melin and S. R. Quake, "Microfluidic large-scale integration: the evolution of design rules for biological automation," Annu. Rev. Biophys. Biomol. Struct., vol. 36, pp. 213-231, 2007.
[7]G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-373, 2006.
[8]D. Erickson and D. Li, "Integrated microfluidic devices," Analytica Chimica Acta, vol. 507, pp. 11-26, 2004.
[9]J. H. Kang and J.-K. Park, "Development of a microplate reader compatible microfluidic device for enzyme assay," Sensors and Actuators B: Chemical, vol. 107, pp. 980-985, 2005.
[10]A. Manz, N. Graber, and H. Widmer, "Miniaturized total chemical analysis systems: a novel concept for chemical sensing," Sensors and actuators B: Chemical, vol. 1, pp. 244-248, 1990.
[11]E. Verpoorte, A. Manz, H. Lüdi, A. Bruno, F. Maystre, B. Krattiger, et al., "A silicon flow cell for optical detection in miniaturized total chemical analysis systems," Sensors and Actuators B: Chemical, vol. 6, pp. 66-70, 1992.
[12]A. H. Ng, U. Uddayasankar, and A. R. Wheeler, "Immunoassays in microfluidic systems," Anal Bioanal Chem, vol. 397, pp. 991-1007, Jun 2010.
[13]M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, et al., "An integrated nanoliter DNA analysis device," Science, vol. 282, pp. 484-487, 1998.
[14]M. U. Kopp, A. J. De Mello, and A. Manz, "Chemical amplification: continuous-flow PCR on a chip," Science, vol. 280, pp. 1046-1048, 1998.
[15]S. H. Choi, D. S. Kim, and T. H. Kwon, "Microinjection molded disposable microfluidic lab-on-a-chip for efficient detection of agglutination," Microsystem Technologies, vol. 15, pp. 309-316, 2009.
[16]J.-Y. Chen, Y.-T. Huang, H.-H. Chou, C.-P. Wang, and C.-F. Chen, "Rapid and inexpensive blood typing on thermoplastic chips," Lab on a Chip, vol. 15, pp. 4533-4541, 2015.
[17]L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, and W. A. MacCrehan, "Fabrication of plastic microfluid channels by imprinting methods," Analytical chemistry, vol. 69, pp. 4783-4789, 1997.
[18]J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, et al., "Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping," Analytical chemistry, vol. 72, pp. 3158-3164, 2000.
[19]D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)," Analytical chemistry, vol. 70, pp. 4974-4984, 1998.
[20]J. Xu, L. Locascio, M. Gaitan, and C. S. Lee, "Room-temperature imprinting method for plastic microchannel fabrication," Analytical Chemistry, vol. 72, pp. 1930-1933, 2000.
[21]R. M. McCormick, R. J. Nelson, M. G. Alonso-Amigo, D. J. Benvegnu, and H. H. Hooper, "Microchannel electrophoretic separations of DNA in injection-molded plastic substrates," Analytical Chemistry, vol. 69, pp. 2626-2630, 1997.
[22]S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmüller, K. Weibezahn, et al., "3D tissue culture substrates produced by microthermoforming of pre-processed polymer films," Biomedical microdevices, vol. 8, pp. 191-199, 2006.
[23]G. S. Fiorini and D. T. Chiu, "Disposable microfluidic devices: fabrication, function, and application," BioTechniques, vol. 38, pp. 429-446, 2005.
[24]C.-W. Tsao and D. L. DeVoe, "Bonding of thermoplastic polymer microfluidics," Microfluidics and Nanofluidics, vol. 6, pp. 1-16, 2009.
[25]H. Becker and C. Gärtner, "Polymer microfabrication technologies for microfluidic systems," Analytical and bioanalytical chemistry, vol. 390, pp. 89-111, 2008.
[26]F. Dang, S. Shinohara, O. Tabata, Y. Yamaoka, M. Kurokawa, Y. Shinohara, et al., "Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method," Lab on a Chip, vol. 5, pp. 472-478, 2005.
[27]L. H. Thamdrup, A. Klukowska, and A. Kristensen, "Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA," Nanotechnology, vol. 19, p. 125301, 2008.
[28]D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature, vol. 442, pp. 381-386, 2006.
[29]J. N. Lee, C. Park, and G. M. Whitesides, "Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices," Analytical chemistry, vol. 75, pp. 6544-6554, 2003.
[30]J. P. Rolland, R. M. Van Dam, D. A. Schorzman, S. R. Quake, and J. M. DeSimone, "Solvent-resistant photocurable “liquid teflon” for microfluidic device fabrication," Journal of the american chemical society, vol. 126, pp. 2322-2323, 2004.
[31]P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, "Cyclic olefin polymers: emerging materials for lab-on-a-chip applications," Microfluidics and Nanofluidics, vol. 9, pp. 145-161, 2010.
[32]Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto, and R. Maeda, "Ultrasonic micromixer for microfluidic systems," Sensors and Actuators A: Physical, vol. 93, pp. 266-272, 2001.
[33]A. D. Stroock, S. K. Dertinger, A. Ajdari, I. Mezić, H. A. Stone, and G. M. Whitesides, "Chaotic mixer for microchannels," Science, vol. 295, pp. 647-651, 2002.
[34]C. Tsao, L. Hromada, J. Liu, P. Kumar, and D. DeVoe, "Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment," Lab on a Chip, vol. 7, pp. 499-505, 2007.
[35]B. Bustgens, W. Bacher, W. Menz, and W. Schomburg, "Micropump manufactured by thermoplastic molding," in Micro Electro Mechanical Systems, 1994, MEMS''94, Proceedings, IEEE Workshop on, 1994, pp. 18-21.
[36]W. Schomburg, R. Ahrens, W. Bacher, C. Goll, S. Meinzer, and A. Quinte, "AMANDA—low-cost production of microfluidic devices," Sensors and Actuators A: Physical, vol. 70, pp. 153-158, 1998.
[37]H. Wu, B. Huang, and R. N. Zare, "Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding," Lab on a Chip, vol. 5, pp. 1393-1398, 2005.
[38]C. Chen, J. Liu, L. Hromada, C. Tsao, C. Chang, and D. DeVoe, "High-pressure needle interface for thermoplastic microfluidics," Lab on a Chip, vol. 9, pp. 50-55, 2009.
[39]I. Ogilvie, V. Sieben, C. Floquet, R. Zmijan, M. Mowlem, and H. Morgan, "Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC," Journal of Micromechanics and Microengineering, vol. 20, p. 065016, 2010.
[40]T. I. Wallow, A. M. Morales, B. A. Simmons, M. C. Hunter, K. L. Krafcik, L. A. Domeier, et al., "Low-distortion, high-strength bonding of thermoplastic microfluidic devices employing case-II diffusion-mediated permeant activation," Lab on a Chip, vol. 7, pp. 1825-1831, 2007.
[41]D. A. Mair, M. Rolandi, M. Snauko, R. Noroski, F. Svec, and J. M. Fréchet, "Room-temperature bonding for plastic high-pressure microfluidic chips," Analytical chemistry, vol. 79, pp. 5097-5102, 2007.
[42]D. A. Mair, E. Geiger, A. P. Pisano, J. M. Fréchet, and F. Svec, "Injection molded microfluidic chips featuring integrated interconnects," Lab on a Chip, vol. 6, pp. 1346-1354, 2006.
[43]M. T. Taylor, P. Nguyen, J. Ching, and K. E. Petersen, "Simulation of microfluidic pumping in a genomic DNA blood-processing cassette," Journal of Micromechanics and Microengineering, vol. 13, p. 201, 2003.
[44]A. T. Woolley, D. Hadley, P. Landre, A. J. deMello, R. A. Mathies, and M. A. Northrup, "Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device," Analytical Chemistry, vol. 68, pp. 4081-4086, 1996.
[45]A. Manz, D. J. Harrison, E. M. Verpoorte, J. C. Fettinger, A. Paulus, H. Lüdi, et al., "Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip," Journal of Chromatography A, vol. 593, pp. 253-258, 1992.
[46]J. G. Smits, "Piezoelectric micropump with three valves working peristaltically," Sensors and Actuators A: Physical, vol. 21, pp. 203-206, 1990.
[47]S. C. Jakeway, A. J. de Mello, and E. L. Russell, "Miniaturized total analysis systems for biological analysis," Fresenius'' journal of analytical chemistry, vol. 366, pp. 525-539, 2000.
[48]M. E. Reid, C. Lomas-Francis, and M. L. Olsson, The blood group antigen factsbook: Academic Press, 2012.
[49]A. S. Wiener, "Genetic Theory of the Rh Blood Types," Experimental Biology and Medicine, vol. 54, pp. 316-319, 1943.
[50]S. Kim, M. Park, and K. Han, "Transfusion medicine," 1999.
[51]V. Migeot, I. Ingrand, L. R. Salmi, and P. Ingrand, "Reliability of bedside ABO testing before transfusion," Transfusion, vol. 42, pp. 1348-1355, 2002.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top