|
[1]P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, et al., "Microfluidic diagnostic technologies for global public health," Nature, vol. 442, pp. 412-418, 2006. [2]D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, "Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications," Chemical Society Reviews, vol. 39, pp. 1153-1182, 2010. [3]V. Srinivasan, V. K. Pamula, and R. B. Fair, "An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids," Lab on a Chip, vol. 4, pp. 310-315, 2004. [4]L. Lafleur, D. Stevens, K. McKenzie, S. Ramachandran, P. Spicar-Mihalic, M. Singhal, et al., "Progress toward multiplexed sample-to-result detection in low resource settings using microfluidic immunoassay cards," Lab on a Chip, vol. 12, pp. 1119-1127, 2012. [5]A. Arora, G. Simone, G. B. Salieb-Beugelaar, J. T. Kim, and A. Manz, "Latest developments in micro total analysis systems," Analytical chemistry, vol. 82, pp. 4830-4847, 2010. [6]J. Melin and S. R. Quake, "Microfluidic large-scale integration: the evolution of design rules for biological automation," Annu. Rev. Biophys. Biomol. Struct., vol. 36, pp. 213-231, 2007. [7]G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-373, 2006. [8]D. Erickson and D. Li, "Integrated microfluidic devices," Analytica Chimica Acta, vol. 507, pp. 11-26, 2004. [9]J. H. Kang and J.-K. Park, "Development of a microplate reader compatible microfluidic device for enzyme assay," Sensors and Actuators B: Chemical, vol. 107, pp. 980-985, 2005. [10]A. Manz, N. Graber, and H. Widmer, "Miniaturized total chemical analysis systems: a novel concept for chemical sensing," Sensors and actuators B: Chemical, vol. 1, pp. 244-248, 1990. [11]E. Verpoorte, A. Manz, H. Lüdi, A. Bruno, F. Maystre, B. Krattiger, et al., "A silicon flow cell for optical detection in miniaturized total chemical analysis systems," Sensors and Actuators B: Chemical, vol. 6, pp. 66-70, 1992. [12]A. H. Ng, U. Uddayasankar, and A. R. Wheeler, "Immunoassays in microfluidic systems," Anal Bioanal Chem, vol. 397, pp. 991-1007, Jun 2010. [13]M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, et al., "An integrated nanoliter DNA analysis device," Science, vol. 282, pp. 484-487, 1998. [14]M. U. Kopp, A. J. De Mello, and A. Manz, "Chemical amplification: continuous-flow PCR on a chip," Science, vol. 280, pp. 1046-1048, 1998. [15]S. H. Choi, D. S. Kim, and T. H. Kwon, "Microinjection molded disposable microfluidic lab-on-a-chip for efficient detection of agglutination," Microsystem Technologies, vol. 15, pp. 309-316, 2009. [16]J.-Y. Chen, Y.-T. Huang, H.-H. Chou, C.-P. Wang, and C.-F. Chen, "Rapid and inexpensive blood typing on thermoplastic chips," Lab on a Chip, vol. 15, pp. 4533-4541, 2015. [17]L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, and W. A. MacCrehan, "Fabrication of plastic microfluid channels by imprinting methods," Analytical chemistry, vol. 69, pp. 4783-4789, 1997. [18]J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, et al., "Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping," Analytical chemistry, vol. 72, pp. 3158-3164, 2000. [19]D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, "Rapid prototyping of microfluidic systems in poly (dimethylsiloxane)," Analytical chemistry, vol. 70, pp. 4974-4984, 1998. [20]J. Xu, L. Locascio, M. Gaitan, and C. S. Lee, "Room-temperature imprinting method for plastic microchannel fabrication," Analytical Chemistry, vol. 72, pp. 1930-1933, 2000. [21]R. M. McCormick, R. J. Nelson, M. G. Alonso-Amigo, D. J. Benvegnu, and H. H. Hooper, "Microchannel electrophoretic separations of DNA in injection-molded plastic substrates," Analytical Chemistry, vol. 69, pp. 2626-2630, 1997. [22]S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmüller, K. Weibezahn, et al., "3D tissue culture substrates produced by microthermoforming of pre-processed polymer films," Biomedical microdevices, vol. 8, pp. 191-199, 2006. [23]G. S. Fiorini and D. T. Chiu, "Disposable microfluidic devices: fabrication, function, and application," BioTechniques, vol. 38, pp. 429-446, 2005. [24]C.-W. Tsao and D. L. DeVoe, "Bonding of thermoplastic polymer microfluidics," Microfluidics and Nanofluidics, vol. 6, pp. 1-16, 2009. [25]H. Becker and C. Gärtner, "Polymer microfabrication technologies for microfluidic systems," Analytical and bioanalytical chemistry, vol. 390, pp. 89-111, 2008. [26]F. Dang, S. Shinohara, O. Tabata, Y. Yamaoka, M. Kurokawa, Y. Shinohara, et al., "Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method," Lab on a Chip, vol. 5, pp. 472-478, 2005. [27]L. H. Thamdrup, A. Klukowska, and A. Kristensen, "Stretching DNA in polymer nanochannels fabricated by thermal imprint in PMMA," Nanotechnology, vol. 19, p. 125301, 2008. [28]D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature, vol. 442, pp. 381-386, 2006. [29]J. N. Lee, C. Park, and G. M. Whitesides, "Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices," Analytical chemistry, vol. 75, pp. 6544-6554, 2003. [30]J. P. Rolland, R. M. Van Dam, D. A. Schorzman, S. R. Quake, and J. M. DeSimone, "Solvent-resistant photocurable “liquid teflon” for microfluidic device fabrication," Journal of the american chemical society, vol. 126, pp. 2322-2323, 2004. [31]P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, "Cyclic olefin polymers: emerging materials for lab-on-a-chip applications," Microfluidics and Nanofluidics, vol. 9, pp. 145-161, 2010. [32]Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto, and R. Maeda, "Ultrasonic micromixer for microfluidic systems," Sensors and Actuators A: Physical, vol. 93, pp. 266-272, 2001. [33]A. D. Stroock, S. K. Dertinger, A. Ajdari, I. Mezić, H. A. Stone, and G. M. Whitesides, "Chaotic mixer for microchannels," Science, vol. 295, pp. 647-651, 2002. [34]C. Tsao, L. Hromada, J. Liu, P. Kumar, and D. DeVoe, "Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment," Lab on a Chip, vol. 7, pp. 499-505, 2007. [35]B. Bustgens, W. Bacher, W. Menz, and W. Schomburg, "Micropump manufactured by thermoplastic molding," in Micro Electro Mechanical Systems, 1994, MEMS''94, Proceedings, IEEE Workshop on, 1994, pp. 18-21. [36]W. Schomburg, R. Ahrens, W. Bacher, C. Goll, S. Meinzer, and A. Quinte, "AMANDA—low-cost production of microfluidic devices," Sensors and Actuators A: Physical, vol. 70, pp. 153-158, 1998. [37]H. Wu, B. Huang, and R. N. Zare, "Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding," Lab on a Chip, vol. 5, pp. 1393-1398, 2005. [38]C. Chen, J. Liu, L. Hromada, C. Tsao, C. Chang, and D. DeVoe, "High-pressure needle interface for thermoplastic microfluidics," Lab on a Chip, vol. 9, pp. 50-55, 2009. [39]I. Ogilvie, V. Sieben, C. Floquet, R. Zmijan, M. Mowlem, and H. Morgan, "Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC," Journal of Micromechanics and Microengineering, vol. 20, p. 065016, 2010. [40]T. I. Wallow, A. M. Morales, B. A. Simmons, M. C. Hunter, K. L. Krafcik, L. A. Domeier, et al., "Low-distortion, high-strength bonding of thermoplastic microfluidic devices employing case-II diffusion-mediated permeant activation," Lab on a Chip, vol. 7, pp. 1825-1831, 2007. [41]D. A. Mair, M. Rolandi, M. Snauko, R. Noroski, F. Svec, and J. M. Fréchet, "Room-temperature bonding for plastic high-pressure microfluidic chips," Analytical chemistry, vol. 79, pp. 5097-5102, 2007. [42]D. A. Mair, E. Geiger, A. P. Pisano, J. M. Fréchet, and F. Svec, "Injection molded microfluidic chips featuring integrated interconnects," Lab on a Chip, vol. 6, pp. 1346-1354, 2006. [43]M. T. Taylor, P. Nguyen, J. Ching, and K. E. Petersen, "Simulation of microfluidic pumping in a genomic DNA blood-processing cassette," Journal of Micromechanics and Microengineering, vol. 13, p. 201, 2003. [44]A. T. Woolley, D. Hadley, P. Landre, A. J. deMello, R. A. Mathies, and M. A. Northrup, "Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device," Analytical Chemistry, vol. 68, pp. 4081-4086, 1996. [45]A. Manz, D. J. Harrison, E. M. Verpoorte, J. C. Fettinger, A. Paulus, H. Lüdi, et al., "Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip," Journal of Chromatography A, vol. 593, pp. 253-258, 1992. [46]J. G. Smits, "Piezoelectric micropump with three valves working peristaltically," Sensors and Actuators A: Physical, vol. 21, pp. 203-206, 1990. [47]S. C. Jakeway, A. J. de Mello, and E. L. Russell, "Miniaturized total analysis systems for biological analysis," Fresenius'' journal of analytical chemistry, vol. 366, pp. 525-539, 2000. [48]M. E. Reid, C. Lomas-Francis, and M. L. Olsson, The blood group antigen factsbook: Academic Press, 2012. [49]A. S. Wiener, "Genetic Theory of the Rh Blood Types," Experimental Biology and Medicine, vol. 54, pp. 316-319, 1943. [50]S. Kim, M. Park, and K. Han, "Transfusion medicine," 1999. [51]V. Migeot, I. Ingrand, L. R. Salmi, and P. Ingrand, "Reliability of bedside ABO testing before transfusion," Transfusion, vol. 42, pp. 1348-1355, 2002.
|