跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/19 20:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂昱緯
研究生(外文):Liu Yu-Wei
論文名稱:建構模糊多目標分段線性規劃模式於產線平衡問題
論文名稱(外文):建構模糊多目標分段線性規劃模式於產線平衡問題
指導教授:康鶴耀康鶴耀引用關係
指導教授(外文):He-Yau Kang
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:62
中文關鍵詞:模糊多目標產線平衡問題數學模式
外文關鍵詞:fuzzy multiple objectivesassembly line balancing problemmathematical model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
產線平衡問題是製造系統中經常碰到的問題,故為了使得產線系統能維持一定水準的生產率就必須同時考慮到多個目標,但在實務上這些目標未必是確定性的,因此模糊多目標產線平衡問題便產生。在傳統的數學模式中大都是已指定目標為考量,進而建立模式以解決問題提升目標品質,故難以建構這樣複雜的問題。在本研究中運用模糊多目標分段線性規劃模式將產線平衡問題中之四個目標,分別為最小化總完工時間、最小化工作站數、最小化工作站平滑度與最大化產品利潤之多目標問題轉換成單一目標,並使用分段線性隸屬函數進行計算所得結果以滿意程度表示,最後舉出案例進行驗證。而當案例規模愈加複雜,以窮舉法之數學規劃模式計算將會耗費大量的時間,造成低的求解效率。故本研究提出遺傳人工免疫演算法求解規模複雜之問題,利用演算法的特性提升求解的品質與效率。實務的環境經常處於不確定的、目標亦是含糊的,故本研究的目的在於幫助決策者不帶主觀與偏激的方式,客觀的考量整體問題並保有彈性決策行為外,做出滿意的決策。
Assembly line balancing problem is often encountered in a manufacturing system. In order to maintain a certain level of production rate, several objectives need to be considered at the same time. However, these objectives are not necessarily certain in real environments, and thus, a fuzzy multiple objective assembly line balancing problem (FMOALBP) is present. In traditional mathematical models, a single objective is considered, and the establishment of a model is to promote the quality of the objective. Therefore, such a model cannot solve a complicated problem. In this paper, a fuzzy multi-objective piecewise linear model for the assembly line balancing problem is applied, and there are four objectives: minimizing cycle time, minimizing the number of workstations, minimizing workload smoothness, and maximizing product profits. This multiple-objective model is converted into a single-objective model, and the piecewise linear membership function is used to calculate the satisfaction degree. A case study is presented to examine the model. And when case size is complicated, exhaustive enumeration become impractical to application. Therefore, heuristic may be necessary to solve the problem. In this paper, genetic artificial immune systems algorithm is constructed for solving large-scale scheduling problem and utilizes it to improve efficiency and quality of solution. In a real practice environment, uncertain condition and fuzzy objective are often present. The purpose of this paper is to help decision makers consider the overall problem objectively and then make satisfactory decisions.
摘要 i
ABSTRACT ii
目錄 iii
致謝 iv
表目錄 v
圖目錄 vi
一、緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3研究流程 2
二、文獻探討 4
2.1生產線平衡問題 4
2.1.1生產線 4
2.1.2生產線平衡問題分類 6
2.2模糊多目標問題 12
2.3啟發式演算法 14
三、研究方法 18
3.1研究假設與符號 18
3.2多目標線性模型建構 19
3.3建構模糊多目標規劃之數學模式 21
3.4建構遺傳人工免疫演算法 24
四、案例研究 28
4.1案例 28
4.2案例一敘述 29
4.2.1初始執行結果 30
4.2.2驗證模糊多目標分段線性規劃模式 31
4.2.3案例分析 34
4.2.4驗證遺傳人工免疫演算法 38
4.3案例二模糊多目標分段線性規劃模式計算結果 40
4.4案例二遺傳人工免疫演算法計算結果 42
4.5案例三遺傳人工免疫演算法計算結果 44
五、結論與建議 48
參考文獻 50

[1]林學茂,2011,模糊環境下多目標專案管理決策,私立修平技術學院精實生產管理研究所,碩士論文。
[2]吳俐葦,2007,模糊多目標數學規劃在軟體開發專案排程之研究,私立世新大學資訊管理學系,碩士論文。
[3]詹蕙珍,2004,模糊多目標非線性規劃在有限資源多專案排程問題之應用,國立屏東科技大學工業管理研究所,碩士論文。
[4]顏伯蒼,2012,建構資源限制下雙邊生產線平衡最佳解之數學規劃,國立中正大學企業管理研究所,碩士論文。
[5]Abdollahpour, S., and Rezaeian, J., 2015, “Minimizing makespan for flow shop scheduling problem with intermediate buffers by using hybrid approach of artificial immune system”, Applied Soft Computing, vol. 28, pp. 44–56.
[6]Alazzam, A., and Lewis III, H.W., 2013, “A new optimization algorithm for combinatorial problems”, International Journal of Advanced Research in Artificial Intelligence, vol. 2, No.5.
[7]Al-Anzi, F.S., and Allahverdi, A., 2013, “An artificial immune system heuristic for two-stage multi-machine assembly scheduling problem to minimize total completion time”, Journal of Manufacturing Systems, vol. 32, pp. 825– 830.
[8]Andres, C., Miralles, C., and Pastor, R., 2008, “Balancing and scheduling tasks in assembly lines with sequence-dependent setup times”, European Journal of Operational Research, vol. 187, pp. 1212–1223.
[9]Balaji, A.N., and Porselvi, S., 2014, “Artificial Immune System Algorithm and Simulated Annealing Algorithm for Scheduling Batches of Parts based on Job Availability Model in a Multi-Cell Flexible Manufacturing System”, Procedia Engineering, vol. 97, pp. 1524 – 1533.
[10]Baybars, I., 1986, “A survey of exact algorithms for the simple assembly line balancing problem”, Management Science, vol. 32, pp. 909–932.
[11]Becker, C., and Scholl, A., 2006, “A survey on problems and methods in generalized assembly line balancing”, European Journal of Operational Research, vol. 168, pp. 694–715.
[12]Boysen, N., Fliedner, M., and Scholl, A., 2007, “A classification of assembly line balancing problems”, European Journal of Operational Research, vol. 183, pp. 674–693.
[13]Boysen, N., and Fliedner, M., 2008, “A versatile algorithm for assembly line balancing”, European Journal of Operational Research, vol. 184, pp. 39–56.
[14]Castro, L.N.D., and Zuben, F.J.V., 2002, “Learning and optimization using the clonal selection principle”, IEEE Transactions on Evolutionary Computation, vol. 6, pp. 239–251.
[15]Chen, M.H., Chang, P.C., and Wu, J.L., 2016, “A population-based incremental learning approach with artificial immune system for network intrusion detection” Engineering Applications of Artificial Intelligence, vol. 51, pp. 171–181.
[16]Chung, T.P., and Liaob, C.J., 2013, “An immunoglobulin-based artificial immune system for solving the hybrid flow shop problem”, Applied Soft Computing, vol. 13, pp. 3729–3736.
[17]Dasgupta, D., Yu, S., and Nino, F., 2011, “Recent Advances in Artificial Immune Systems: Models and Applications”, Applied Soft Computing, vol. 11, pp. 1574–1587.
[18]Hannan, E. L., 1981, “Linear programming with multiple fuzzy goals”, Fuzzy Set and Systems, vol. 6, pp. 235–248.
[19]Hinckeldeyn, J., Dekkers, Rob., Altfeld , N., and Kreutzfeldt, J., 2014, “Expanding bottleneck management from manufacturing to product design and engineering processes”, Computers & Industrial Engineering, vol. 76, pp. 415–428.
[20]Kang, H.-Y., and Lee, A.H.I., 2010, “Inventory replenishment model using fuzzy multiple objective programming: A case study of a high-tech company in Taiwan”, Applied Soft Computing, vol. 10, pp. 1108–1118.
[21]Kim, Y.K., Kim, Y.J., and Kim, Y., 1996, “Genetic algorithms for assembly line balancing with various objectives”, Computers & Industrial Engineering, vol. 30, pp. 397–409.
[22]Kucukkoc, I., and Zhang, D., 2015, “Type-E parallel two-sided assembly line balancing problem: Mathematical model and ant colony optimisation based approach with optimised parameters”, Computers & Industrial Engineering, vol. 84, pp. 56–69.
[23]Kucukkoc, I., and Zhang, D.Z., 2015, “Balancing of parallel U-shaped assembly lines”, Computers & Operations Research, vol. 64, pp. 233–244.
[24]Leberling, H., 1981, “On finding compromise solutions in multicriteria problems using the fuzzy min-operator”, Fuzzy Set and Systems, vol. 6, pp. 105–118.
[25]Li, X.Q., Zhang, B., and Li, H., 2006, “Computing efficient solutions to fuzzy multiple objective linear programming problems”, Fuzzy Set and Systems, vol. 157, pp. 1328–1332.
[26]Magna, G., Casti, P., Jayaraman, S.V., Salmeri, M., Mencattini, A., Martinelli, E., and Natale, C.D., 2016, “Identification of mammography anomalies for breast cancer detection by an ensemble of classification models based on artificial immune system”, Knowledge-Based Systems, vol. 101, pp. 60–70.
[27]Mazhar, N., and Farooq, M., 2011, “A hybrid artificial immune system (AIS) model for power aware secure Mobile Ad Hoc Networks (MANETs) routing protocols”, Applied Soft Computing, vol. 11, pp. 5695–5714.
[28]Miralvand, M., Rasoolzadeh, S., and Majidi, M., 2015, “Proposing a features preprocessing method based on artificial immune and minimum classification errors methods”, Journal of Applied Research and Technology, vol. 13, pp. 477-481.
[29]Mobini, M., Mobini, Z., and Rabbani, M., 2011 “An Artificial Immune Algorithm for the project scheduling problem under resource constraints”, Applied Soft Computing, vol. 11, pp. 1975–1982.
[30]Montechiesi, L., Cocconcelli M., and Rubini, R., 2016, “Artificial immune system via Euclidean Distance Minimization for anomaly detection in bearings”, Mechanical Systems and Signal Processing, vol. 76-77, pp. 380–393.
[31]Nicosia, G., Pacciarelli D., and Pacifici, A., 2002, “Optimally balancing assembly lines with different workstations”, Discrete Applied Mathematics, vol. 118, pp. 99–113.
[32]Sakawa, M., 1988, “An interactive fuzzy satisficing method for multi-objective linear fractional programming problem”, Fuzzy Set and Systems, vol. 28, pp. 129–144.
[33]Salveson, M. E, 1955, “The assembly line balancing problem”, The Journal of Industrial Engineering, vol. 6, no. 3, pp. 18–25.
[34]Scholl, A., 1999, “Balancing and sequencing assembly lines”, 2nded, Heidelberg, Physica.
[35]Scholl, A., and Becker, C., 2006, “State-of-the-art exact and heuristic solution procedures for simple assembly line balancing”, European Journal of Operational Research, vol. 168, pp. 666–693.
[36]Scholl, A., and Klein, R., 1999, “Balancing assembly lines effectively - A computational comparison”, European Journal of Operational Research, vol. 114, pp. 50–58.
[37]Sungur, B., and Yavuz, Y., 2015, “Assembly line balancing with hierarchical worker assignment”, Journal of Manufacturing Systems, vol. 37, pp. 290–298.
[38]Tiacci, L., 2015, “Simultaneous balancing and buffer allocation decisions for the design of mixed-model assembly lines with parallel workstations and stochastic task times”, Int. J.Production Economics, vol. 162, pp. 201–215.
[39]Timmis, J., Hone, A., Stibor, T., and Clark, E., 2008 “Theoretical advances in artificial immune systems”, Theoretical Computer Science, vol.403, pp. 11–32.
[40]Wang, E.J., Su, T.S., and Chang, M.H., 2013, “Comparative study of the applicability of fuzzy multi-objective linear programming models through cost-effective analysis for mold manufacturing”, Journal of Manufacturing Systems, vol. 32, pp. 206– 219.
[41]Zadeh, L.A., 1965, “Fuzzy sets”, Information and Control, vol. 18, no. 3, pp. 338–353.
[42]Zimmermann, H.J., 1978, “Fuzzy programming and linear programming with several objective functions”, Fuzzy Sets and Systems, vol. 1, pp. 45–55.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top