(34.239.150.57) 您好!臺灣時間:2021/04/19 00:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王筠
研究生(外文):Yun Wang
論文名稱:數值高程模型對洪災風險評估之不確定性研究
論文名稱(外文):The Effects of Uncertainty in Flood Risk Assessment due to DEM
指導教授:林漢良林漢良引用關係
口試委員:蔡博文邱景生張學聖
口試日期:2018-07-11
學位類別:碩士
校院名稱:國立成功大學
系所名稱:都市計劃學系
學門:建築及都市規劃學門
學類:都市規劃學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:105
中文關鍵詞:不確定性洪災風險評估網格式數值地形模型
外文關鍵詞:UncertaintyFlood Risk AssessmentDEM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有效的洪災風險評估在面臨氣候變遷的衝擊下更形重要,而洪災風險評估是一套環環相扣的模擬演算過程,依序包含水文模擬分析、淹水模擬分析以及洪災風險分析,且多以網格式的數值高程模型(DEM)作為源頭主要輸入的地文資料,但不同DEM解析度之高程點,因為系統抽樣的過程將流失原本複雜地表之特性,因此單位格網面積越大,其網格高程將造成均夷化而有所失真。又洪災風險評估中不確定性來源包括資料、模式以及參數的不確定性因子,其中DEM為評估過程中主要的資料不確定性來源,受其影響將可能造成演算結果形成差異,若結果之間具有差異亦即存在「Garbage in, garbage out」的不確定性現象。因此,本研究目的即驗證不同DEM解析度是否會造成洪災風險評估上的偏誤。本研究討論來自DEM之資料不確定性方法包含固定模式以及參數設定來避免模式與參數所造成之誤差,並以5公尺DEM作為真實地表之基準,分別以10公尺、20公尺、30公尺、40公尺DEM各階段結果與其比較。此外,本研究之洪災風險評估過程包含水文模擬分析、淹水模擬分析以及洪災風險分析,其中水文模擬為ArcGIS水文模組中完成初步淹水格網的劃設、淹水模擬則依據地文性淹排水模式進行,而洪災風險評估則以淹水模擬結果之淹水潛勢圖做為洪災風險分析之危害度指標,並將建築面積做為脆弱度指標,以兩者之乘積作為洪災風險值。將所有階段性結果透過敘述性統計、推論統計之檢定方法,以及空間疊圖分析後,研究結果顯示各個演算結果受到DEM解析度的影響,於洪災風險評估之三個層次過程中,於每一個階段以不同形式產生差異而使得結果具不確定性。不過,由於分析結果並未隨DEM解析度改變而呈現規則的變化,但與過去研究結果相同皆以坡度參數的影響最大。雖本研究結果未能反應因DEM之資料不確定性而使得整體洪災風險評估過程呈顯疊代累積的情形之外,較高DEM解析度之演算結果也未必越接近真實現象,但若單指洪災風險評估之分群結果,則解析度越高則相對接近5公尺DEM。此外,本研究結果具一定的地形特性的侷限,亦建議未來研究需考量地形適用性而因地制宜的選擇研究範圍。
An efficient flood risk assessment plays an important part for dealing with the impact of climate change. Flood risk assessment requires a sequence of individual assessments, including hydrological analysis, inundation analysis, and flood risk analysis, in that order. Comprehensive simulation is based on DEM data, and grid-based structures influence results. Some input errors from DEM data can introduce uncertainties across different DEM grid sizes. This can also create a “Garbage in, garbage out” situation. The objective of this study is to examine the effects of DEM resolution on flood risk assessment. To avoid uncertainty factors in the model and the parameters, the hydrological modelling are automatically conducted in ArcGIS Hydrology Toolsets. Physiographic Inundation modelling is done to map out the flood potential. The flood risk assessment approach refers to the relative research of Water Resources Agency. Also, all parameters are fixed with the exception of DEM data. One-way ANOVA and RMSEA are used to test for deviations between different DEM resolution-phased results. The Bay-gang catchment is the study area selected. According to definitions of uncertainty due to DEM, 5m DEM data are designed to represent a real landscape in this study and are gridded at 10, 20, 30, 40m resolution to generate every relevant computing stage in the flood risk assessment. They are then compared with the 5m DEM data separately. The results show that DEM resolution significantly affects the simulation of each stage, especially the slope that is the parameter derived from elevation data. There is no evidence that better resolution produces results closer to 5m and that the results are cumulative for the entire assessment procedure.
第一章 緒論 1
第一節 研究背景 1
第二節 研究目的 3
第三節 研究流程 4
第二章 不確定性理論與DEM解析度相關研究回顧 5
第一節 不確定性理論 5
第二節 DEM解析度之不確定性相關研究回顧 14
第三章 研究方法與設計 20
第一節 地文性淹排水模式 20
第二節 洪災風險評估 39
第三節 不確定性檢定方法 43
第四節 操作流程 47
第四章 不確定性驗證分析與討論 48
第一節 研究範圍 48
第二節 洪災風險評估模擬結果與分析 51
第三節 洪災風險評估不確定性之分析與討論 86
第五章 結論與建議 97
第一節 結論 97
第二節 建議 99
參考文獻 100
Apel, H., Thieken, A. H., Merz, B., & Bl¨oschl, G. (2004). Flood risk assessment and associated uncertainty. Natural Hazards and Earth System Sciences, 4, 295-308.
Band, L. E. (1986). Topographic partition of watersheds with digital elevation models. Water Resources Research, 22(1), 15-24.
Bruneau, P., Gascuel-Odoux1, C., Robin, P., Merot, P., & Beven, K. (1995). Sensitivity to space and time resolution of a hydrological model using digital elevation data. Hydrological Processes, 9(1), 69-81.
Christian, J., Duenas-Osorio, L., Teague, A., Fang, Z., & Bedient, P. (2013). Uncertainty in floodplain delineation: expression of flood hazard and risk in a Gulf Coast watershed. Hydrological Processes, 27(19), 2774-2784. doi: 10.1002/hyp.9360
Clarke, S., & Burnett, K. (2003). Comparison of Digital Elevation Models for Aquatic Data Development. Photogrammetric Engineering and Remote Sensing, 69(12), 1367-1375.
Compton, K. L., Faber, R., Ermolieva, T. Y., Linnerooth-Bayer, J., & Nachtnebel, H.-P. (2009). Uncertainty and disaster risk management: modeling the flash flood risk to Vienna and its subway system: International Institute for Applied Systems Analysis.
Cooper, M. (1998). Datums, coordinates and differences. Landform Monitoring, Modelling and Analysis, 21-35.
De Moel, H., & Aerts, J. (2011). Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates. Natural Hazards, 58(1), 407-425.
Finkel, A. M., Tamang, D., Wilson, E., Kroll, B., Marmillod, D., Foerster, R., . . . Claussi, A. (1990). Confronting uncertainty in risk management; a guide for decision makers a report: Resources for the Future, Washington, DC (EUA).
Haimes, Y. Y. (2004). Risk Modeling, Assessment, and Management: Wiley Publishing.
Haimes, Y. Y., & Hall, W. A. (1977). Sensitivity, responsivity, stability and irreversibility as multiple objectives in civil systems. Advances in water resources, 1(2), 71-81.
IPCC. (2007). Climate Change 2007:Synthesis Report. Geneva: IPCC.
Jenson, S., & Domingue, J. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54(11), 1593-1600.
Jung, Y., & Merwade, V. (2012). Uncertainty Quantification in Flood Inundation Mapping Using Generalized Likelihood Uncertainty Estimate and Sensitivity Analysis. Journal of Hydrologic Engineering, 17(4), 507-520. doi: 10.1061/(asce)he.1943-5584.0000476
Kiureghian, A. D., & Ditlevsen, O. (2009). Aleatory or epistemic? Does it matter? Structural Safety, 31(2), 105-112. doi: 10.1016/j.strusafe.2008.06.020
Liaw, S.C., Smith, F. M., Hsia, Y.J., King, H.B., & Hwong, J.L. (2000). Effect of grid size of the digital terrain model on hydrologic simulation. 台灣林業科學, 15(1), 21-30.
Ling, C. W. (1993). Characterizing Uncertainty: A taxonomy and an analysis of extreme events. University of Virginia.
Lowrance, W. W. (1976). Of acceptable risk.
Merwade, V., Cook, A., & Coonrod, J. (2008). GIS techniques for creating river terrain models for hydrodynamic modeling and flood inundation mapping. Environmental Modelling & Software, 23(10-11), 1300-1311. doi: 10.1016/j.envsoft.2008.03.005
Merz, B., & Thieken, A. H. (2009). Flood risk curves and uncertainty bounds. Natural Hazards, 51(3), 437-458. doi: 10.1007/s11069-009-9452-6
Moore, I., Lewis, A., & Gallant, J. (1993). Terrain attributes: estimation methods and scale effects.
Morgan, M. G., & Henrion, M. (1990). Uncertainty: a Guide to dealing with uncertainty in quantitative risk and policy analysis Cambridge University Press. New York, New York, USA.
O'Callaghan, J. F., & Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing, 28(3), 323-344.
Ozdemir, H., Sampson, C. C., de Almeida, G. A. M., & Bates, P. D. (2013). Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data. Hydrology and Earth System Sciences, 17(10), 4015-4030. doi: 10.5194/hess-17-4015-2013
Quinn, P., Beven, K., Chevallier, P., & Planchon, O. (1991). The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5(1), 59-79.
Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2), 309-319.
Taylor, A. (1992). Using objective and subjective information to develop distributions for probabilistic exposure assessment. Journal of exposure analysis and environmental epidemiology, 3(3), 285-298.
The world bank. (2005). Natural Disaster Hotspots: A Global Risk Analysis. Washington, DC: World Bank.
UNISDR. (2009). 2009 UNISDR terminology on disaster risk reduction. Geneva, Switzerland: UNISDR.
Wise, S. (2000). Assessing the quality for hydrological applications of digital elevation models derived from contours. Hydrological Processes, 14(11‐12), 1909-1929.
Wolock, D. M., & Price, C. V. (1994). Effects of digital elevation model map scale and data resolution on a topography-based watershed model. Water Resources Research, 30(11), 3041-3052.
Yang, P., Ames, D. P., Fonseca, A., Anderson, D., Shrestha, R., Glenn, N. F., & Cao, Y. (2014). What is the effect of LiDAR-derived DEM resolution on large-scale watershed model results? Environmental Modelling & Software, 58, 48-57.
Yu, D., & Lane, S. N. (2006a). Urban fluvial flood modelling using a two‐dimensional diffusion‐wave treatment, part 1: mesh resolution effects. Hydrological Processes, 20(7), 1541-1565.
Yu, D., & Lane, S. N. (2006b). Urban fluvial flood modelling using a two‐dimensional diffusion‐wave treatment, part 2: development of a sub‐grid‐scale treatment. Hydrological Processes, 20(7), 1567-1583.
Zhang, J., & Goodchild, M. F. (2002). Uncertainty in Geographical Information: CRC Press.
Zhou, Q., & Liu, X. (2004). Analysis of errors of derived slope and aspect related to DEM data properties. Computers & Geosciences, 30(4), 369-378.
Zhang, W., & Montgomery, D. R. (1994). Digital elevation model grid size, landscape representation, and hydrologic simulations. WATERR ESOURCESR ESEARCH, 30(4), 1019-1028.
江明晃,(2006),台中市區數值地形解析度對淹水模擬結果之比較,國立台灣大學生物環境系統工程學研究所。
林文賜、朱豐沂,(2009),集水區自動劃分理論之評估與應用,水保技術, 4(2),頁 74-80。
林文賜、林昭遠、黃碧慧、周文杰,(2006),集水區自動劃分模式建立之研究,中華水土保持學報, 37(4),頁 337-354。
邱皓政、林碧芳、許碧純、陳育瑜,(2012),統計學:原理與應用,五南。
連以婷,(2010),水文參數之不確定性分析,國立台灣大學生物資源暨農學院生物環境系統工程學系。
國家災害防救科技中心,(2010),莫拉克颱風之災情勘查與分析,頁 652。
張景雄,(2008),空間信息的尺度、不確定性與融合,武漢大學出版社。
莊永忠、陳永寬、詹進發,(2006),數值地形模型網格解析度對自動化河川萃取之影響,中華林學季刊, 39(4),頁 497-515。
莊永忠、廖學誠、詹進發、黃正良,(2007),不同網格解析度與流向演算法對蓮華池集水區地形指標之影響,地理學報, 50,頁 73-100。
許晃雄、周佳、吳宜昭、盧孟明、陳正達、陳永明,(2012),台灣氣候變遷的關鍵議題,台灣醫學, 16,頁 459-470。
陳順宇、郭碧娥,(2004),統計學,華泰書局。
黃成甲、許銘熙、李懿軒,(2014),格網局部細化之淹水平行演算模式,台灣農業工程學報, 60(2),頁 85-100。
楊昌儒、蔡長泰,(1995),數值高程模型解析度對嘉義沿海地區淹水模擬影響之研究--以賀伯颱風為例,台灣水利,頁 10。
楊昌儒、蔡長泰,(2011),應用GIS於社區淹水潛勢區分析及潛勢危險區劃分研究,弘光學報, 63(37)。
楊奕岑、徐美玲、賴進貴,(2005),DEM 解析度暨流向演算法對於集流面積計算之影響,地理學報, 39,頁 71-90。
經濟部水利署,(2013a),流域洪氾防災及土資源管理之研究(3/3)教育訓練手冊。
經濟部水利署,(2013b),氣候變遷對中部地區水旱災災害防救衝擊評估及調適策略擬定,頁 543。
經濟部水資源局,(2001),水文應用手冊。
廖于慧,(2008),網格解析度對淹水模擬影響分析。屏東科技大學土木工程系所學位論文,頁 1-46。
賴進貴,(1996),數值高度模型與地形計測研究資料解析度問題,地理學報,20,頁 61-73。
顏榮甫、楊昌儒、蔡長泰,(2000),應用地文性淹水模式進行降雨-逕流模擬之研究,台灣水利, 48(8)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔