跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 18:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭竣宇
研究生(外文):Chun-YuCheng
論文名稱:深層滑動破壞面之潛變行為研究
論文名稱(外文):Investigating the Creep Behaviors on Sliding Surface of Deep-Seated Landslide
指導教授:李德河李德河引用關係林宏明林宏明引用關係
指導教授(外文):Der-Her LeeHung-Ming Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:210
中文關鍵詞:深層滑動破壞面潛變重模頁岩靜態三軸潛變試驗
外文關鍵詞:deep-seated landslidecreep failure surfaceremolded shalestatic triaxial creep test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以草嶺與小林村之深層滑動為例,探討大規模崩塌破壞時滑動面上產生的潛變行為特性,草嶺地滑區在歷年來之滑動,早已出現許多的斷崖;而小林村邊坡在滑動破壞前,於源頭處就已出現邊坡重力變形的跡象,因此現地岩盤皆處於殘餘應力的狀態,故本研究以重模的方式模擬滑動面的材料,進而探討其潛變之特性。重模試體的製作乃是採用邊坡滑動面上的破碎岩石,例如草嶺卓蘭層頁岩以及小林村鹽水坑頁岩,以超過液性限度之含水量進行試體的重模,並加載現地之覆土荷重,直到試體沉陷量不再發生變化即重模完成。將重模試體進行均質性檢測,驗證以重模技術模擬滑動面材料為可行的。而後將重模試體分成氣乾與飽和兩個部分,施作單壓與傳統三軸試驗,建立強度破壞準則,做為進行靜態三軸潛變試驗時所用荷重設計之參考依據。
在潛變試驗的過程中,配合應力比的設計,以多階段荷重加載的方式進行三軸潛變試驗,求得潛變速率與時間之關係,將結果正規化後可以得知,重模飽和試體在減速潛變階段之減速斜率比重模氣乾試還要低。最後繪出潛變試驗過程中的最小應變速率與破壞時間之雙對數座標圖,並統整前人於岩石的潛變試驗所得到最小應變速率與破壞時間之結果,迴歸後比較可以發現,皆呈線性分佈且落在同一信賴區間當中,故可藉此推導出以深層滑動破壞面材料之潛變行為與潛變破壞(沿破壞面滑動)時間的關係,進而可以建立岩石邊坡滑動破壞的預警系統。
This study, using the deep-seated landslides in Caoling and Siaolin village as examples, aimed at investigating the characteristics of creeping behavior caused by a sliding surface in a large-scale collapse damage. The sliding of the Caoling landslide area over the years has caused numerous cliffs, while prior to the slide damage, the slope in Siaolin village has shown signs of gravitational deformation, indicating that the existing bedrocks are both subjected to residual stress. Hence, this research simulated the sliding surface materials based on a remold model, aimed at further exploring the creeping characteristics. The remolded specimens were made of broken rocks on the sliding surface of slopes. For example, the remolding tests on the Chuolan shale in Caoling and the Yenshuikeng shale in Siaolin Village were conducted under the condition of water content exceeding the liquid limit, wherein earth covering was provided until the ground subsidence no longer varied. The remolded specimens were then subjected to a homogeneity test to verify the feasibility of using the remolding technique to simulate sliding surface materials. Thereafter, an uniaxial and triaxial compression test was conducted on the said specimens that were both classified into two groups, namely, air-dried and saturated specimens, to establish the strength failure criterion, which subsequently served as a load design reference for the static triaxial creep test.
Notably, with a view to obtaining the relationship of the creep rate versus time, the load was added in a multistage manner during the triaxial creep test to meet the stress ratio requirements. Normalizing the results suggested that, in a decelerated creep stage, the deceleration slope of the remolded saturated specimen is lower than that of the remolded air-dried specimen. Consequently, a log–log plot depicting the minimum strain rate versus the failure time was drawn, which was integrated and compared with their prior counterparts through regression analysis. The results indicated that the data were linearly distributed in the same confidence interval, which could be used to infer the relationship between the creeping behaviors of the surface materials resulting from a deep-seated landslide and the creep failure time (sliding along the failure surface), and to further establish an early warning system for preventing the occurrence of rock slope sliding damage.
摘要....................I
誌謝....................XII
目錄....................XIV
圖目錄....................XVIII
表目錄....................XXV
照片目錄....................XXVIII
第一章 緒論....................1
1-1 研究動機與目的....................1
1-2 研究方法與流程....................2
1-3 論文內容....................4
第二章 文獻回顧....................7
2-1 深層滑動....................7
2-1-1 基本定義....................7
2-1-2 地形特徵....................10
2-1-3 破壞型式....................12
2-1-4 影響因子....................14
2-2 軟弱岩石分類標準....................15
2-3 材料強度破壞準則....................18
2-4 材料潛變....................21
2-4-1 基本定義....................21
2-4-2 潛變特性....................22
2-4-4 影響因素....................31
2-5 潛變依時行為模式....................33
2-5-1 經驗模式....................34
2-5-2 質流模式....................39
2-5-2 黏彈塑性模式....................43
2-6 潛變破壞時間預測....................47
第三章 研究場址與材料介紹....................57
3-1 草嶺研究區域....................57
3-1-1 地理位置與地形介紹....................57
3-1-2 地層分布與地質構造....................59
3-1-3 地下水狀況....................60
3-1-4 邊坡滑動過程....................61
3-1-5 採樣地點....................66
3-2 小林村研究區域....................69
3-2-1 地理位置與地形介紹....................69
3-2-2 地層分布與地質構造....................71
3-1-3 水文流域....................72
3-1-4 邊坡滑動成因....................73
3-1-5 採樣地點....................81
第四章 試驗儀器與方法....................86
4-1 試驗儀器....................86
4-1-1 試體重模設備....................86
4-1-2 超音波儀器....................87
4-1-3 力學與潛變試驗設備....................88
4-2 試驗步驟與規劃....................92
4-2-1 基本物理性質試驗....................92
4-2-2 重模試體製作過程....................94
4-2-3 重模試體均質性檢測....................97
4-2-4 超音波試驗....................100
4-2-5 基本力學試驗....................102
4-2-5-1 單軸壓縮試驗....................102
4-2-5-2 三軸不壓密不排水試驗....................103
4-2-5-3 三軸壓密不排水試驗....................104
4-2-6 潛變特性試驗....................107
4-2-6-1 重模氣乾試體三軸靜態潛變試驗....................107
4-2-6-2 重模飽和試體三軸靜態潛變試驗....................108
第五章 結果分析與討論....................110
5-1基本物理性質試驗結果....................110
5-2 重模試體製作過程....................113
5-3重模試體均質性檢測....................116
5-3-1 重模卓蘭層頁岩....................116
5-3-2 重模鹽水坑頁岩....................121
5-4 重模試體基本力學性質....................124
5-4-1 單軸壓縮強度試驗結果....................124
5-4-2 三軸壓縮強度試驗結果....................127
5-5 重模試體潛變試驗結果....................136
5-5-1 重模卓蘭層頁岩氣乾試體....................136
5-5-2 重模卓蘭層頁岩飽和試體....................146
5-5-3 重模鹽水坑頁岩氣乾試體....................157
5-5-4 重模鹽水坑頁岩飽和試體....................167
5-6 重模試體潛變模型建立與試驗結果比較....................176
5-6-1 重模卓蘭層頁岩氣乾試體....................176
5-6-2 重模卓蘭層頁岩飽和試體....................179
5-6-3 重模鹽水坑頁岩氣乾試體....................182
5-6-4 重模鹽水坑頁岩飽和試體....................184
5-7 重模試體潛變試驗應用....................187
第六章 結論與建議....................190
6-1 結論....................190
6-2 建議....................193
參考文獻....................194
附錄....................205
1.千木良雅弘,大規模崩塌潛感區,科技圖書有限公司,台灣,台北市,2011。
2.山口勉、大久保誠介,西松裕一、小泉昇三,「三成目安山岩の軸壓縮荷重下および周壓下におけるクリープ實驗—岩石の破壊および變形における時間依存性の研究」,日本礦業會誌,第99期,第1150號,第1038-1043頁,1983。
3.古志生,「石英砂岩之依時力學性質研究」,國立成功大學土木工程研究所碩士論文,台灣,台南市,1991。
4.台灣總督府氣象台,嘉義地方烈震報告,台灣,台北市,1942。
5.何岱杰、張維恕、林慶偉、劉守恆,應用數值地形及光學影像於潛在大規模崩塌地形特徵判譯,行測及遙測學刊,第18卷,第2期。第106-127頁。2014。
6.宋國城、林慶偉、林偉雄、林文正,五萬分之一台灣地質圖,圖幅第五十一號,甲仙,經濟部中央地質調查所,2000。
7.李延彥,「高雄市小林崩塌地之地質及引發山崩之機制研究」,國立成功大學地球科學研究所碩士論文,台灣,台南市,2011。
8.李德河,邊坡破壞時間之預測,地工技術雜誌,第7期,第7-12頁,1984。
9.李錫堤,「草嶺大崩山之地質與地形演變」,中華水土保持學報,第42卷,第4期,第325-335頁,2011。
10.李錫堤、洪如江、林銘郎、蔡龍珆,草嶺崩塌地工程地質調查與穩定性評估,中興工程顧問社,專題研究報告,1993。
11.李錫堤、董家鈞、林銘郎,「小林災變之地質背景探討」,地工技術,第122期,第87-94頁,2009。
12.李鎮洋、賴文基、陳振宇、黃效禹、郭力行,「莫拉克颱風複合型災害發生歷程的時空重建—以小林村深層崩塌為例」,中華水土保持學報,第42卷,第4期,第313-324頁,2011。
13.赤井浩一,General aspect of soft rock,土基礎,第41期,第1-6頁,1993。
14.赤井浩一、足立紀尚、西好一,「堆積軟岩(多孔質凝灰岩)の時間依存特性と構成式」,土木學會論文報告,第282號,第75-87頁,1979。
15.林宏明,「石英砂岩與大理石的力學特性及組成律之研究」,國立成功大學土木工程研究所碩士論文,台灣,台南,1992。
16.林啟文、張徽正、盧詩丁、石同生、黃文正,臺灣活動斷層概論(第二版)—五十萬分之一臺灣地區活動斷層分布圖說明書,經濟部中央地質調查所特刊,第十三號,第1-122頁,2000。
17.侯進雄、費立沅,「台灣大規模崩塌調查的發展現況」,地質專題,第一期,第40-44頁,2012。
18.洪如江,「順向坡之破壞與穩定」,地工技術,第94期,第5-18頁,2002。
19.洪如江,九二一集集大地震後續短期研究—草嶺大崩山之後續研究,國家地震工程研究中心,2000。
20.張森源、李錫堤,「草嶺地區之地質與崩山」,中興工程,第十九期,第27-43頁,1989。
21.許琦,「荷重作用下岩石之依時組成模式」,國立成功大學土木工程研究所博士論文,台灣,台南市,1993。
22.許琦、李德河,「泥岩的時間依存行為之組成率模式研究」,中華民國第十三屆全國力學會議,台中市,第181-191頁,1989。
23.許琦、陳昭旭、李德河,「乾燥泥岩的潛變行為研究」,中華民國第十二屆全國力學會議。台北市,第697-705頁,1988。
24.陳明義,草嶺地區自然資源,行政院農業委員會,台灣,台北市,2003。
25.陳昭旭,「泥岩的時間依存行為」,國立成功大學土木工程研究所碩士論文,台灣,台南市,1988。
26.陳清泉,「莫拉克颱風高雄縣甲仙鄉小林村及那瑪夏鄉、桃源鄉致災原因調查報告」,行政院公共工程委員會,台灣,台北市,2010。
27.陳樹群、吳俊鋐,「高雄縣小林村獻肚山巨型崩塌引致之地形變遷特性」,中華水土保持學報,第40期,第4卷,第357-374頁,2009。
28.陳樹群。土砂災害與深層崩塌機制探討。行政院中央災害防救會報。台灣。台北市。2010。
29.陳聯光,「大規模崩塌災害防治推動策略規劃」,極端氣候的挑戰—大規模山崩防災研討會議手冊,第I-1-I-14頁,台灣,台北市,2012。
30.渡正亮,「地すベりの型と對策」,地すベり學會,Vol. 8,No.1,pp. 1-5,1971。
31.黃鑑水、何信昌、劉桓吉,「台灣中部草嶺地區之地質與山崩」,經濟部中央地質調查所彙刊,第2號,第95-112頁,1983。
32.葉峻維,「古亭坑層泥岩潛變行為之研究」,國立成功大學土木工程研究所碩士論文,台灣,台南市,2008。
33.齊藤迪孝,「斜面崩壞予測」,土と基礎,第29期,第5號,第77-82頁,1981。
34.蔡亞廷,「重模鹽水坑頁岩的潛變特性之研究」,國立成功大學土木工程研究所碩士論文,台灣,台南市,2015。
35.謝承均,「利用有限元素法探討莫拉克颱風降雨引致獻肚山崩塌機制之研究」,國立成功大學土木工程研究所碩士論文,台灣,台南市,2013。
36.魏倫瑋、羅佳明、鄭添耀、鄭錦桐、冀樹勇。深層崩塌之地貌特徵—以台灣南部地區為例。中興工程。第115期。第35-43頁。2012。
37.Adachi, T., Takase, A., “Prediction of long term strength of soft sedimentary rock, Proceeding of International Symposiumon on Weak Rock, Tokyo, pp. 77-107., 1981.
38.Adachi, T., Takese, A., “Prediction of long term strength of soft sedimentary rock, Proceedings of the International Symposium on Weak Rocks, Tokyo, pp. 77-107, 1981.
39.Agliardi. F., Crosta G., Zanchi. A., “Structural constraints on deep-seated slope deformation kinematics, Engineering Geology, Vol. 59, Issues 1-2, pp. 83-102, 2001.
40.Akai, K., Ohnishi, Y., Yashima, A., “Strain-softening behavior of soft sedimentary rock in triaxial test condition, Proceeding of the International Symposiumon on Weak Rock, Tokyo, pp. 81-86., 1981.
41.Andrade, E. N., Da, C., “On the viscous flow in metals, and allied phenomena, Proceedings of the Royal Society of London, Vol. 84, pp.1-12, 1910.
42.Bieniawski, Z. T., “Rock mechanics design in mining and tunneling, Balkema, Boston, pp. 272, 1984.
43.Chen, R. F., Chang, K. J., Angelier, J., Chan, Y. C., Deffontaines, B., Lee, C. T., Lin, M. L., “Topographical changes revealed by high-resolution airborne LiDAR data: The 1999 Tsaoling landslide induced by the Chi–Chi earthquake, Engineering Geology, Vol. 88, pp. 160-172, 2006.
44.Chigira, M., “Long-term gravitational deformation of rocks by mass rock creep, Engineering Geology, Vol. 32, pp. 157-184, 1992.
45.Chigira, M., Wang, W. N., Furuya, T., Kamai, T., “Geological causes and geomorphological precursors of the Tsaoling landslide triggered by the 1999 Chi-Chi earthquake, Taiwan, Engineering Geology, Vol. 68, pp. 259-273, 2003.
46.Coulomb, C. A., “Essai sur une application des règles de maximis et minimis à quelques problèmes de statique, relatifs à l’architecture, Mémoirs, Academie Sciences, Paris, pp. 343-382, 1776.
47.Cruden, D. M., “The static fatigue of brittle rock under uniaxial compression, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 11, Issue. 2, pp. 67-73, 1974.
48.Das, B. M., Principles of Geotechnical Engineering, 7th Edition, Cengage Learning, USA, 2010.
49.Evans, R. H. “The elasticity and plasticity of rocks and artificial stone, Proceedings of the Leeds Philosophical and Literary Society, Vol. 3, pp. 145-158, 1936.
50.Glamheden, R., Hökmark, H., “Creep in jointed rock masses, Swedish Nuclear Fuel and Waste Management Co, 2010.
51.Goodman, R. E., Introduction to Rock Mechanics, Second Edition, John Wiley & Sons, Inc., 1989.
52.Griggs, D., “Creep of rocks, Journal of Geology, Vol. 47, No. 3, pp. 225-251, 1939.
53.Griggs, D., “Deformation of rocks under high confining pressure: I. Experiments at room temperature, Journal of Geology, Vol. 44, No. 5, pp. 541-577, 1936.
54.Griggs, D., “Experimental flow of rocks under conditions favouring recrystallization, Geological Society of America Bulletin, Vol. 51, pp. 1001-1022, 1940.
55.Heap, M. J., Baud, P., Meredith P. G., “Influence of temperature on brittle creep in sandstones, Geophysical research letters, Vol. 36, 2009.
56.Holzer, T. L., Hoeg, K., Arulanadan, K., “Excess pore pressures during undrained clay creep, Canadian Geotechnical Journal, Vol. 10, No. 1, pp. 12-24, 1973.
57.Huang, C.S., Ho, H.C., Liu, H.C., “The geology and landslide of Tsaoling area, Yunlin., Bulletin of Central Taiwan Geologcal Survey, Vol. 2, pp. 95-112, 1983.
58.ISRM, “Basic geotechnical description of rock mass, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol.18, No.1, pp.85-110, 1981.
59.ISSMFE, Technical Committee Report on Undisturbed and Laboratory Testing of Soft Rocks and Indurated Soils, International Society for Soil Mechanics and Foundation Engineering, 1985.
60.Jeffreys, H., “A modification of Lomnitz’s Law of creep in rocks, Geophysical Journal International, Vol. 1, pp. 92-95, 1958.
61.Johnston, I. W., “Soft rock engineering, Comprehensive Rock Engineering: Principles, Practice and Projects, Vol.1, pp.367-393, 1993.
62.Kirby, S. H., McCormick, J. W., “Inelastic properties of rocks and minerals: strength and rheology, Handbook of physical properties of rocks, Vol. 3, pp. 146-151.
63.Kutter, B., Sathialingam, N., “Elastic-viscoplastic modelling of the rate-dependent behaviour of cays, Geotechnique, Vol. 42, No. 3, pp. 427-441, 1992.
64.Lacerda, W. A., “Stress-relaxation and creep effects on soil deformation, Ph.D. Thesis, University of California, Berkeley, 1977.
65.Ladanyi, B. “Time-dependent response of rock around tunnels, Analysis and design Methods, Vol. 2, pp. 77-112, 1993.
66.Lajtai, E. Z., Schmidtke, R. H., Bielus, L. P.(1987), “The effect of water on the time-dependent deformation and fracture of a granite, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 24, Issue 4, pp. 247–255.
67.Lama, R. D., Vutukuri, V. S., “Handbook on Mechanical Properties of Rock, Vol. 3, pp. 279, 1978.
68.Lecomte, P., “Creep in rock salt, The Journal of Geology, Vol. 73, No. 3, pp. 4893-4898, 1965.
69.Lee, C. T., “Geological investigation on the catastrophic landslide in Siaolin village, southern Taiwan, Geodynamics and Environment in East Asia: International Conference and 7th Taiwan-France Symposium, Earth Science Symposium, 2010.
70.Lomnitz, C., “Creep measurements in igneous rocks, Journal of Geology, Vol. 64, pp. 473-479, 1956.
71.Matsushima, S., “On the flow and fracture of igneous rocks, Bulletins, Disaster Prevention Research Institute, Kyoto University, Vol. 10, No. 36, pp. 2-9, 1960.
72.Misra, A. K., Murrell, S. A. F., “An experimental study of the effect of temperature and stress on the creep of rocks, Geophysical Journal International, Vol. 9, No. 5, pp. 509-535, 1965.
73.Mitchell, J. K. and Soga, K., Fundamentals of Soil Behavior, Third Edition, John Wiley & Sons, Inc., 2005.
74.Mohr, O., “Welche umstände bedingen die elastizitätsgrenze und den bruch eines Materials, Zeitschrift des Vereines Deutscher Ingenieure, Vol. 44, pp. 1524-1530, 1990.
75.Obert L., Duvall W. I., Rock Mechanics and the Design of Structures in Rock, John Wiley & Sons, Inc., 1967.
76.Oliverira, R. , “Weak rock materials, The Engineering Geology of Weak Rock, Cripps et al., Balkma, Rotterdam, pp. 5-15, 1993.
77.Perzyna, P., “The constitutive equation for work-hardening and rate sensitive plastic materials, Proceedings of Vibration Problems, Warsaaw, Vol. 4, No. 3, pp. 281-290, 1963.
78.Russo, G., “Some considerations on the applicability of major geomechanical classifications to weak and complex rocks in tunnelling, GEAM, Vol. 31, No. 82, pp. 63-70, 1994.
79.Saito, M., “Evidential study on forecasting occurrence of slope failure, Application Geological Survey Annual Report, No. 1, pp. 1-23, 1979.
80.Saito, M., “Forecasting time of slope failure by tertiary creep, Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Moxico City, Vol. 1, pp. 677-683, 1969.
81.Saito, M., Uezawa, H., “Failure of soil due to creep, In Proceedings of 5th international conference on soil mechanics and foundation engineering, Paris, Vol. 1, pp. 315-318, 1961.
82.Singh, A., Mitchell, J. K., “Creep potential and creep rupture of soils, In Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, Vol. 1, pp. 379-384., 1969.
83.Singh, A., Mitchell, J. K., “General stress-strain-time function for soils, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. 1, pp. 21-46, 1968.
84.Singh, D. P., “A study of creep of rocks, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, Vol. 12, Issue. 9, pp. 271-275.,1975.
85.Stini. J., “Unsere täler wachsen zu, Geologie und Bauwesen, Wien 13(3), pp. 71–79, 1941.
86.Tang, C. L., Hu, J. C., Lin, M. L., Angelier, J., Lu, C. Y., Chan, Y. C., Chu, H. T., “The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation, Engineering Geology, Vol. 106, pp. 1-19, 2009.
87.Terzaghi , K., Erdbaumechanik auf bodenphysikalicher Grundlage, Franz Dueticke, Wien, 1925.
88.Terzaghi, K., Mechanism of Landslides, Application of Geology to Engineering Practice, New York , Geological Society of America, pp. 83-123, 1950.
89.Tsou, C. Y., Feng, Z. Y., Chigira, M., “Catastrophic landslide induced by typhoon Morakot, Shiaolin, Taiwan, Geomorphology, Vol. 127, Issues 3-4, pp. 166-178, 2011.
90.Varnes, D. J., Slope movement types and processes, Transportation Research Board, Washington, D.C., pp. 11-33, 1978.
91.Vyalov, S. S., Maslov, N. N., Karaulova, Z. M., “Laws of soil creep and long-term strength, In Proceedings of 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 1, pp. 337-340, 1977.
92.Wu, C. H., Chen, S. C., Chou, H. T., “Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in the Kaoping Watershed, Taiwan, Engineering Geology, Vol. 123, Issues 1-2, pp. 13-21., 2011.
93.Yang, C., “Experimental investigation of creep behavior of salt rock, International Journal of Rock Mechanics and Mining Sciences, Vol. 36, Issue. 2, pp. 233-242, 1999.

參考網站:
1.交通部中央氣象局,http://www.cwb.gov.tw
2.第一站地圖庫,http://www.onegreen.net
3.國家標準網路服務系統,http://www.cnsonline.com.tw
4.經濟部中央地質調查所,http://www.moeacgs.gov.tw
5.經濟部水利署,http://www.wra.gov.tw
6.ASTM International, http://www.astm.org
7.GCTS, http://www.gcts.com

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊