跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 05:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾詠茹
研究生(外文):Yung-JuTseng
論文名稱:有限元素分析不同外徑/壁厚比局部圓形凹痕圓管在循環彎曲負載下之行為
論文名稱(外文):Finite Element Analysis on the Response of Local Round-dented Circular Tubes with Different Diameter-to-thickness Ratios under Cyclic Bending
指導教授:潘文峰
指導教授(外文):Wen-fung Pan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:77
中文關鍵詞:有限元素橢圓化彎矩曲度循環彎曲
外文關鍵詞:MomentCurvatureOvalizationLocal-dentCyclic Bending
相關次數:
  • 被引用被引用:7
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本文使用有限元素軟體ANSYS Workbench 15.0分析不同外徑/壁厚比與不同深度的圓形凹痕6061-T6鋁合金圓管承受對稱曲度控制循環彎曲負載下之力學行為。其中所考慮的外徑/壁厚比分別為16.5、31及60,而圓形凹痕深度分別為0、0.3、0.6、0.9及1.2mm,而所分析的力學行為包括:彎矩與曲度的關係及橢圓化與曲度的關係。
實驗彎矩-曲度的關係顯示,外徑/壁厚比為16.5的圓管管壁較厚,所以凹痕深度影響彎矩-曲度關係較小,而外徑/壁厚比為31和60的圓管管壁較薄,當凹痕深度越深,向下彎時其凹痕深處產生不同程度的接觸,會造成彎矩值在第一圈循環負載呈現先增加後減少的現象,而在第二圈後彎矩-曲度曲線漸趨於穩定的狀態。
實驗橢圓化-曲度關係顯示,無凹痕的圓管該關係呈現對稱棘齒狀的增長,而凹痕圓管則呈現不對稱棘齒狀的增長,且凹痕深度越深時,不對稱的現象就越明顯,橢圓化增長的速度也就越快。至於外徑/厚度比越大的圓管管壁較薄,使得達到相同曲度其所需彎矩值就越小,而橢圓化增長就越快。最後,本文將ANSYS模擬結果與實驗結果相比較,雖然數值上還有一些差異,但趨勢上卻是非常相似。

In this study, the finite element software ANSYS Workbench 15.0 is used to analyze the response of local round-dented circular tubes with different diameter-to-thickness ratiosand dent depths subjected to cyclic bending. The diameter-to-thickness ratiosare 16.5, 31 and 60, theround-dented depths are 0, 0.3, 0.6, 0.9 and 1.2mm and the analysis mechanical response includes: the relationship between the moment and curvature and relationship between the ovalization and curvature. It can be seen form theexperimental moment-curvature relationship that due to the thicker wall-thickness for tube with the diameter-to-thickness ratio of 16.5, the dent depth has less influence on the moment-curvature relationship. Tubes with the diameter-to-thickness ratiosof 31 and 60 have thinner wall-thickness.Due to the different degree of contact between two sides of the dent deep for deeper dents, the moment shows increasing and then decreasing phenomenon for reverse downward bending at the first cycle. However, the moment-curvature curve becomes stable after the 2nd cycle. It can be observed form theexperimental ovalization-curvature relationship that it exhibits the symmetrical, ratcheting and increasing way for tubes without a dent and the unsymmetrical, ratcheting and increasing way for tubes with a dent. Larger dent depth leads to severe unsymmetrical phenomenon and fast increasing of the ovalization. As for tubes with larger diameter-to-thickness ratios have thinner wall thicknesses, this will cause less bending moment and fast increasing of the ovalization when tubes bend to a constant curvature. Finally, the ANSYS simulations are compared with the experimental data, Although there are some differences in values, but the trend is very similar.
摘要.............................I
致謝.............................XIV
目錄.............................XV
表目錄...........................XVII
圖目錄...........................XVIII
符號.................... ........XXI
第一章:緒論........................1
1-1研究背景及動機....................1
1-2文獻回顧.........................3
1-3論文內容.........................10
第二章理論基礎.......................11
2-1有限元素法........................11
2-2塑性理論介紹......................13
2-2-1雙線性動態硬化法則(Bilinear kinematic hardening)............. 15
2-2-2多線段動態硬化法則(Multilinear kinematic hardening) .............17
2-3 ANSYS WORKBENCH 15.0 軟體介紹.............18
2-3-1前處理(pre-processing.............19
2-3-2有限元素分析(Finite Element Analysis)....22
2-3-3後處理(postprocessor)............. 23
第三章ANSYS Workbench分析.............24
3-1材料參數設定.......................24
3-2有限元素模型之建立..................25
3-2-1幾何模型.........................25
3-2-2網格元素說明......................27
3-3-3網格分割.........................28
3-3邊界條件與負載設定..................29
3-3-1圓管產生凹痕......................29
3-3-2圓管受循環彎曲負載.................33
3-4求解條件..........................36
第四章分析結果.......................39
4-1彎矩與曲度關係....................39
4-2橢圓化與曲度關係..................56
第五章結綸..........................73
參考文獻............................75

1. P. K. Shaw and S. Kyriakides, “Inelastic Analysis of Thin-Walled Tubes under Cyclic Bending,"Int. J. Solids Struct., Vol.21, No.11, pp.1073-1100, 1985

2. M. Elchalakani and X. L. Zhao, “Concrete-filled cold-formed circular steel tubes subjected to variable amplitude cyclic pure bending,"Engineering Structures, Vol.30, Issue 2, pp.287-299, 2008

3. W. F. Pan, T. R. Wang and C. M. Hsu, A curvature-ovalization measurement apparatus for circular tubes under cyclic bending, Experimental Mechanics, Vol. 38, No. 2, pp.99-102 (1998)

4. K. L. Lee, W. F. Pan and J. N. Kuo, The influence of thediameter-to-thickness ratio on the stability of circular tubes under cyclic bending, International Journal of Solids and Structures, Vol. 38, No. 14, pp. 2401-2413 (2001).

5. K. L. Lee, W. F. Pan and C. M. Hsu, Experimental and theoretical evaluations of the effect between diameter-to-thickness ratio and curvature-rate on the stability of circular tubes under cyclic bending, JSME International Journal, Series A, Vol. 47, No. 2, pp. 212-222 (2004).

6. K. H. Chang and W. F. Pan, Buckling life estimation of circular tubes under cyclic bending,International Journal of Solids and Structures, Vol. 46, No. 2, pp. 254-270 (2009).

7. K. L. Lee, C. Y. Hung and W. F. Pan, Variation of ovalization for sharp-notched circular tubes under cyclic bending, Journal of Mechanics, Vol. 26, No. 3, pp. 403- 411 (2010).

8. K. L. Lee, C. M. Hsu and W. F. Pan, The influence of diameter-to-thickness ratios on the response and collapse of sharp-notched circular tubes under cyclic bending,Journal of Mechanics, Vol. 28, No. 3, pp. 461-468 (2012).

9. 李國龍、洪兆宇和潘文峰,循環彎曲負載下橢圓形凹槽圓管皺曲損壞之實驗分析,中正嶺學報,第四十一卷,第二期,183-190頁(2012)。

10. K. L. Lee, Y. T. Chan and W. F. Pan, Finite element ANSYS analysis of the behavior for 6061-T6 aluminum tubes under cyclic bending with external pressure,Journal of Civil Engineering and Architecture, Vol. 8, No. 6, pp. 673-679 (2014).

11. K. L. Lee, C. H. Meng and W. F. Pan, The influence of notch depth on the response of local sharp-notched circular tubes under cyclic bending, Journal of Applied Mathematics and Physics, Vol. 2, No. 6, pp. 335-341 (2014)

12. K. L. Lee, Y. Wang and W. F. Pan, Finite element analysis on the response of local sharp-notched circular tubes under cyclic bending, Key Engineering

13. 林煒凱,「有限元素ANSYS分析橢圓形凹槽薄壁管在循環彎曲負載下之力學行為」國立成功大學工程科學研究所碩士論文,2008

14. 葉弘文,「有限元素分析尖銳凹槽SUS304不鏽鋼圓管在循環彎曲負載下之力學行為」國立成功大學大學工程科學研究所碩士論文,2012

15.洪揚銘,「有限元素分析局部尖銳凹槽圓管在循環彎曲負載下之行為」國立成功大學工程科學研究所碩士論文,2013

16.孟慶勳,「有限元素分析局部凹痕遠管在循環負載下之行為」,國立成功大學工程科學所碩士論文,2015

17.吳政昌,「凹痕圓管在循環彎曲負載下行為之實驗研究」,國立成功大學工程科學所碩士論文,2015

18.王建竣,「不同外徑/壁厚比局部圓形凹痕圓管在循環彎曲負載下行為及毀損之研究」,國立成功大學工程科學所碩士論文,2016

19.李輝煌,ANSYS工程分析-基礎與觀念,高立圖書有限公司,2005

20. Kyriakids, S, and Shaw, P.K,“Inelastic Buckling of Tubes under Cyclic Loads,ASME Journal of Pressure Vessel Technology, Vol,109, pp169-178,1987

21.K. L. Lee, C. M. Hsu and W. F. Pan, Viscoplastic collapse of sharp-notched circular tubes under cyclic bending, Acta Mechanics Solida Sinica, Vol. 26, No. 6, pp. 629- 641 (2013).

22.K. L. Lee, C. M. Hsu and W. F. Pan, Response of sharp-notched circular tubes under bending creep and relaxation,Mechanical EngineeringJournal, Vol. 1, No. 2, pp. 1-14 (2014).

23.S. Kyriakides and G. T. Ju, “Bifurcation And Localization Instabilities In Cylindrical Shells Under Bending-I. Experiment,"Int. J. Solids Struct, Vol.29, No.9, pp.1117-1142, 1992

24.K. L. Lee and W. F. Pan, Pure bending creep of SUS304 stainless steel tubes, Steel and Composite Structures, Vol. 2, No. 6, pp. 461-474 (2002).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊