|
[1] Manz A, Graber N, Widmer HM, Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and Actuators B-Chemical 1: 244-248, 1990. [2] Anderson NL, The human plasma proteome: history, character, and diagnostic prospects. Molecular & Cellular Proteomics 1: 845-867, 2002. [3] Shoji S, Microfabrication technologies and micro flow devices for chemical and bio-chemical micro flow systems. Microprocesses and Nanotechnology 7B-4-2: 72-73, 1999. [4] Gravesen P, Branebjerg J, Jensen OS, Microfluidics-a review. Journal of Micromechanics and Microengineering 3: 168-182, 1993. [5] Richter T, Shultz-Lockyear LL, Oleschuk RD, Bilitewski U, Harrison DJ, Bi-enzymatic and capillary electrophoretic analysis of non-fluorescent compounds in microfluidic devices - Determination of xanthine. Sensors and Actuators B-Chemical 81: 369-376, 2002. [6] Vinet F, Chaton P, Fouillet Y, Microarrays and microfluidic devices: miniaturized systems for biological analysis. Microelectronic Engineering 61-2: 41-47, 2002. [7] Beebe D, Wheeler M, Zeringue H, Walters E, Raty S, Microfluidic technology for assisted reproduction. Theriogenology 57: 125-135, 2002. [8] Reyes DR, Iossifidis D, Auroux PA, Manz A, Micro total analysis systems. 1. Introduction, theory, and technology. Analytical Chemistry 74: 2623-2636, 2002. [9] Di Carlo D, Wu LY, Lee LP, Dynamic single cell culture array, Lab on a Chip, 6, 1445-1449 ,2006. [10] Mirzadeh H, Shokrolahi F, Daliri M, Effect of silicon rubber crosslink density on fibroblast cell behavior in vitro, J. Biomedical Materials Research Part B, 67A, 727-732,2003. [11] Lee JN, Jiang X, Ryan D, Whitesides GM, Compatibility of mammalian cells on surfaces of polydimethylisiloxane, Langmuir 20, 11684-11691, 2004. [12] Charati SG., Stern SA, Diffusion of gases in silicon polymers: molecular dynamic simulation, Macromolecules 31, 5529-5535, 1998. [13] Gebauer P, Bocek P, Recent progress in capillary isotachophoresis. Electrophoresis 23: 3858–3864, 2002. [14] Burgi DS, Chien RL, Optimization in Sample Stacking for High-Performance Capillary Electrophoresis. Analytical Chemistry 63: 2042-2047, 1991. [15] Khandurina J, Jacobson SC, Waters LC, Foote RS, Ramsey JM, Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. Analytical Chemistry 71: 1815-1819, 1999. [16] Swerdlow JA-WH, Fluidic Preconcentrator device for capillary electrophoresis of proteins. Analytical Chemistry 75: 5207-5212, 2003. [17] Oleschuk RD, Shultz-Lockyear LL, Ning YB, Harrison DJ, Trapping of bead-based reagents within microfluidic systems: On-chip solid-phase extraction and electrochromatography. Analytical Chemistry 72: 585-590, 2000. [18] Song S, Singh AK, Kirby BJ, Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. Analytical Chemistry 76: 4589-4592, 2004. [19] Quirino JP, Terabe S, Exceeding 5000-Fold concentration of dilute analytes in micellar electrokinetic chromatography. Science 282: 465-468, 1998. [20] Yu C, Davey MH, Svec F, Frechet JMJ, Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Analytical Chemistry 73: 5088-5096, 2001. [21] Kim SJ, Song YA, Han J, Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications. Chemical Society Reviews 39: 912-922, 2010. [22] Foote RS, Khandurina J, Jacobson SC, Ramsey JM, Preconcentration of proteins on microfluidic devices using porous silica membranes. Analytical Chemistry 77: 57-63, 2005. [23] Cui HC, Horiuchi K, Dutta P, Ivory CF, Multistage isoelectric focusing in a polymeric microfluidic chip. Analytical Chemistry 77: 7878-7886, 2005. [24] Wang Y-C, Stevens AL, Han J, Million-fold preconcentration of proteins and peptides by nanofluidic filter. Analytical Chemistry 77: 4293-4299, 2005. [25] Jung B, Bharadwaj R, Santiago JG, On-chip millionfold sample stacking using transient isotachophoresis. Analytical Chemistry 78: 2319-2327, 2006. [26] Hoeman KW, Lange JJ, Roman GT, Higgins DA, Culbertson CT, Electrokinetic trapping using titania nanoporous membranes fabricated using sol-gel chemistry on microfluidic devices. Electrophoresis 30: 3160-3167, 2009. [27] Hlushkou D, Dhopeshwarkar R, Crooks RM, Tallarek U, The influence of membrane ion-permselectivity on electrokinetic concentration enrichment in membrane-based preconcentration units. Lab on a Chip 8: 1153-1162, 2008. [28] Hatch AV, Herr AE, Throckmorton DJ, Brennan JS, Singh AK, Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels. Analytical Chemistry 78: 4976-4984, 2006. [29] Kim SJ, Li LD, Han J, Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab on a Chip 8: 596-601, 2008. [30] Yu H, Lu Y, Zhou YG, Wang FB, He FY, et al., A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing. Lab on a Chip 8: 1496-1501, 2008. [31] Kim P, Kim SJ, Han J, Suh KY, Stabilization of ion concentration polarization using a heterogeneous nanoporous junction. Nano Letters 10: 16-23, 2010. [32] Dhopeshwarkar R, Crooks RM, Hlushkou D, Tallarek U, Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane. Analytical Chemistry 80: 1039-1048, 2008. [33] Schoch R, Han J, Renaud P, Transport phenomena in nanofluidics. Reviews of Modern Physics 80: 839-883, 2008. [34] Kim SJ, Li LD, Han J, Amplified electrokinetic response by concentration polarization near nanofluidic channel. Langmuir 25: 7759-7765, 2009. [35] Kim SJ, Wang Y-C, Lee J, Jang H, Han J, Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Physical Review Letters 99: 044501, 2007. [36] Wang Y, Pant K, Chen Z, Wang G, Diffey WF, et al., Numerical analysis of electrokinetic transport in micro-nanofluidic interconnect preconcentrator in hydrodynamic flow. Microfluidics and Nanofluidics 7: 683-696, 2009. [37] Wang YC, Han J, Pre-binding dynamic range and sensitivity enhancement for immuno-sensors using nanofluidic preconcentrator. Lab on a Chip 8: 392-394, 2008. [38] Rubinstein I, Shtilman L, Voltage against current curves of cation exchange membranes. Journal of the Chemical Soceity-Faraday Transactions II 75: 231-246 1979. [39] Dukhin SS, Mishchuk NA, Intensification of electrodialysis based on electroosmosis of the second kind. Journal of Membrane Science 79: 199-210, 1993. [40] Barraga’n VM, Ru?’z-Bauza’ C, Current voltage curves for ion-exchange membranes a method for determining the limiting current density. Journal of Colloid and Interface Science 205: 365–373, 1998. [41] Zaltzman IRB, Electro-osmotically induced convection at a permselective membrane. Physical Review E 62: 2238-2251, 2000. [42] Pu QS, Yun JS, Temkin H, Liu SR, Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Letters 4: 1099-1103, 2004. [43] Chun H, Chung TD, Ramsey JM, High Yield Sample preconcentration using a highly ion-conductive charge-selective polymer. Analytical Chemistry 82: 6287-6292, 2010. [44] Khandurina J, McKnight TE, Jacobson SC, Waters LC, Foote RS, et al., Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Analytical Chemistry 72: 2995-3000, 2000. [45] Lee JH, Song, YA, and Han JY, Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab on a Chip 8: 596-601, 2008. [46] Kim SJ and Han J, Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications. Analytical Chemistry 80: 7179-7179, 2008. [47] Chao CC, Chiu PH, Yang RJ, Preconcentration of diluted biochemical samples using microchannel with integrated nanoscale Nafion membrane. Biomedical Microdevices 17(2):25 2015. [48] Chen CL, Yang RJ, Effects of microchannel geometry on preconcentration intensity in microfluidic chips with straight or convergent-divergent microchannels. Electrophoresis 33: 751-757, 2012. [49] Ko SH, Song YA, Kim SJ, Kim M, Han J, Kang KH, Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization. Lab on a Chip, 12, 4472-4482, 2012. [50] Kumar R, Xu C. X, and Scott K, Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells. Rsc Advances 2: 8777-8782, 2012. [51] Feng K, Tang B, and Wu P, Sulfonated graphene oxide–silica for highly selective Nafion-based proton exchange membranes. J. Mater. Chem. A 2: 16083-16092, 2014. [52] Song H, Wang Y, Garson C, Pant K, Concurrent DNA preconcentration and separation in bipolar electrode-based microfluidic device. Analytical Methods 7, 1273-1279, 2015. [53] Mao P, Han J, Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding. Lab on a Chip 5: 837-844, 2005. [54] Mao P, Han J, Massively-parallel ultra-high-aspect-ratio nanochannels as mesoporous membranes. Lab on a Chip 9: 586-591, 2009. [55] Kim SJ, Han J, Self-sealed vertical polymeric nanoporous-junctions for high-throughput nanofluidic applications. Analytical Chemistry 80 (9), 3507–3511, 2008. [56] Huang KD, Yang RJ, Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel. Microfluidics and Nanofluidics, 5: 631-638, 2008. [57] Mishchuk NA, The role of water dissociation in concentration polarisation of disperse particles. Colloids and Surfaces a-Physicochemical and Engineering Aspects 159: 467-475, 1999. [58] Hunter RJ, Zeta potential in colloid science: principles and applications. Academic Press, New York 8: 386, 1981. [59] Probstein R F, Physicochemical hydrodynamics: an Introduction (2nd ed.), New York: John Wiley and Sons, 1994. [60] Yang C, Li DQ, Masliyah JH, Modeling forced liquid convection in rectangular microchannels with electrokinetic effects. International Journal of Heat and Mass Transfer 41: 4229-4249, 1998. [61] Lyklema J, Electrokinetics after Smoluchowski. Colloids and Surfaces a-Physicochemical and Engineering Aspects 222: 5-14, 2003. [62] Yang RJ, Fu LM, Hwang CC, Electroosmotic entry flow in a microchannel. Journal of Colloid and Interface Science 244: 173-179, 2001. [63] Patankar NA, Hu HH, Numerical simulation of electroosmotic flow. Analytical Chemistry 70: 1870-1881, 1998. [64] Kim SJ, Ko SH, Kang KH, Han J, Direct seawater desalination by ion concentration polarization. Nature Nanotechnology 5: 297-301, 2010. [65] Strathmann H, Ion-exchange membrane separation processes. Elsevier, 2004. [66] Ng JMK, Gitlin I, Stroock AD, Whitesides GM, Components for integrated poly (dimethylsiloxane) microfluidic systems. Electrophoresis 23: 3461-3473, 2002. [67] McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu HK, et al., Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21: 27-40, 2000. [68] McDonald JC, Whitesides GM, Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts of Chemical Research 35: 491-499, 2002. [69] Bhattacharya S, Datta A, Berg JM, Gangopadhyay S, Studies on surface wettability of poly (dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. Journal of Microelectromechanical Systems 14: 590-597, 2005. [70] Kim SJ, Song Y-A, Han J, Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications. Chemical Society Reviews 39: 912-922, 2010. [71] Liu V, Song YA, Han J, Capillary-valve-based fabrication of ion-selective membrane junction for electrokinetic sample preconcentration in PDMS chip. Lab on a Chip 10: 1485-1490, 2010.
|