跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 01:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭庭瑀
研究生(外文):Ting-YuKuo
論文名稱:光體積描記法訊號特性分析
論文名稱(外文):The Analysis of the Photoplethysmography Signal Characteristic
指導教授:周榮華周榮華引用關係
指導教授(外文):Jung-Hua Chou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:工程科學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:46
中文關鍵詞:光感測器光體積描記法心率膚色影響
外文關鍵詞:LED sensorsPhotoplethysmographyHeart rateSkin color effect
相關次數:
  • 被引用被引用:2
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究目的,為在使用光感測器測量PPG訊號時,分析訊號特徵。雖然光感測器便於使用,但是訊號的品質時常受到雜訊與運動偽訊的影響。因此,知道PPG訊號在不同情況下的特徵是十分重要的。
PPG訊號可以用不同波長的光感測器量得,本論文使用了三種波長的LED做實驗,包括綠光(525 nm)、紅光(660 nm)、紅外光(950 nm)。不同波長的光有不同的穿透深度,且血管與微血管的分佈在每個感測部位也會不同;另外,不同的膚色對不同光線的波長有特定的吸收度。實驗設計尋找光線波長與量測部位的關聯,心率資訊由PPG訊號經過傅立葉轉換後,最大波峰對應的頻率得知。
實驗結果得知紅外線感測器在所有量測位置都有最強的訊號,膚色較深之人會造成訊號強度的減弱,運動前後的峰值位置變化可以明顯的看出來。除此之外,運動偽訊在頻域訊號也能被觀察到,每位受試者的訊號強度在運動後皆會減弱。

This thesis serves to find the characteristics of light sensors for PPG sensing. Though the light sensors are convenient to employ, the quality of the PPG signal is usually affected by noises and motion artifacts. Therefore, it is essential to know the PPG signal features under different conditions.
The PPG signal can be obtained by light sensors of different wavelengths; this study uses three kinds of LEDs to implement for examination, including green (525 nm), red (660 nm), infrared (950 nm) lights. The penetration depth varies with respect to wavelengths, the distribution of blood vessels and capillaries is different for each measurement site. Moreover, different skin colors have distinct absorption of light wavelengths. Experiments are designed to examine the relationship between light wavelengths and measurement sites. Heart rate information is deduced by Fourier transform; the frequency of the highest peak indicates the subject’s heart rate.
The experimental results show that the infrared light emitting diode provides the strongest signal magnitude among all measurement sites. The subject who has deep color skin causes reduction on the signal magnitude. The changes of the highest peak position is visible before and after physical exercise. Furthermore, the motion artifact can be evidently observed in the frequency domain. The magnitude decreases after exercise for each subject.

摘要 I
Extended Abstract II
致謝 VIII
目錄 IX
圖目錄 XI
表目錄 XIV
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 3
1.3研究目標 5
第二章 文獻回顧 6
2.1光體積描記法原理 6
2.2 LED的選擇與感測位置 7
2.2運動偽訊與雜訊的消除 11
2.3 心率的計算 13
第三章 系統建構 16
3.1 感測器 16
3.2 驅動與接收電路 18
3.3光電晶體與光二極體比較 21
3.4 ADC Converter 與資料傳輸 22
3.5 序列埠通訊軟體 24
3.6 頻譜分析 24
第四章 結果與討論 25
4.1 驅動頻率與占空比 25
4.2 位置對應波長的訊號強度 26
4.3膚色對應波長的訊號強度 28
4.4 移動狀態 32
4.5 心率的變化 34
4.6 運動前後訊號強度差異 35
第五章 結論與建議 39
5.1 結論 39
5.2 建議 39
參考文獻 41

[1]J. Allen, “Photoplethysmography and its application in clinical physiological measurement, Physiological Measurement, IOP Science, Vol. 28, No.3, pp. 1-39, 2007.
[2]K. Nakajima, T. Tamura, and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digiatalfiltering technique, Medical Engineering & Pgysics, Vol. 18, No. 5, pp. 365-372, 1996.
[3]D. Li, H. Zhao, and S. Dou, “A new signal decomposition to estimate breathing rate and heart rate from photoplethysmography signal, Biomedical Signal Processing and Control, Vol. 19, pp. 89-95, 2015.
[4]K. Venu Madhav, M. Raghu Ram, E. Hari Krishna, Nagarjuna Reddy Komalla, and K. Ashoka Reddy, “Estimation of respiration rate from ECG, BP and PPG signals using empirical mode decomposition, Instrumentation and Measurement Technology Conference, pp. 1-4, 2011.
[5]L. M. Nilson, “Respiration signals from photoplethysmography, Anesthesia & Analgesia, Vol. 117, No. 4, pp. 859-865, 2013.
[6]S. Bagha, and L. Shaw, “A real time analysis of PPG signal for measurement of SpO2 and pulse rate, International Journal of Computer Applications, Vol. 36, No. 11, 2011.
[7]S. H. Song, J. S. Cho, H. S. Oh, J. S. Lee, and I. Y. Kim, “Estimation of blood pressure using photoplethysmography on the wrist, 36th Annual Computers in Cardiology Conference, pp. 741-744 ,2009.
[8]W. H. Lin, D. WU, C. Li, H. Zhang, and Y. T. Zhang, “Comparison of heart rate variability form PPG with that from ECG, The International Conference on Health Informatics, Vol.42, pp. 213-215, 2013.
[9]G. Lu, F. Yang, J. A. Taylor, and J. F. Stein, “A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects, Journal of Medical Engineering & Technology, Vol. 33, No. 8, 2009.
[10]呂宗憲、林筱莉、陳智傑,ECG與PPG信號之相關性研究,逢甲大學自動控制工程學系專題,臺灣,2006。
[11]R. Kraudel, “Optical heart rate monitoring: what you need to know, VALENCELL BLOG, 2015.
[12]J. E. Hayes, D. W. Robinson, and F. W. Masters, “A simple, inexpensive method of evaluating circulation in pedicled tissues, Plastic & Reconstructive Surgery, Vol. 42, No. 2, pp. 141-147, 1968.
[13]徐國峰,每一種強度的訓練都有其意義,耐力網,2014。
[14]S. Lopez, “Pulse oximeter fundamentals and design, Free Semiconductor, Document Number: AN4327, 2012.
[15]Furch, 心率偵測錶準嗎? Apple、Samsung、小米、Garmin、Asus 五大品牌大PK!, T客邦,3/14/2016。
[16]A. Alzahrani, S. Hu, and V. Azorin-Peris, “A comparative study of physiological monitoring with a wearable opto-electronic patch sensor (OEPS) for motion reduction, Biosensors, Vol. 5, No. 2, pp. 288-307, 2015.
[17]N. Tsai,尼克小學堂-光學式心跳量測簡介,2015。
[18]V. Vizbara, A. Sološenko, D. Stankevičius, and V. Marozas, “Compariosn of green, blue and infrared light in wrist and forehead photoplethysmography, 19th International Conference of Biomedical Engineering, Vol. 17, No. 1, 2013.
[19]Lee, and Jihyoung, 体調管理のためのイヤータイプ・スマート生体情報モニター開発を目指した基礎研究, 金沢大学, 2014。
[20]K. Shin, Y. Kim, S. Bae, K. Park, and S. Kim, “A novel headest with a transmissive PPG sensor for heart rate measurement, 13th International Conference on Biomedical Engineering, IFMBE, Vol. 23, pp. 519-522, 2009.
[21]C. Z. Wang, and Y. P. Zheng, “Home-telcare of the elderly living alone using an new designed ear-wearable sensor, Medical Devices and Biosensors, pp. 71-74, 2008.
[22]S. Vogel, M. Hülsbusch, T. Henning, V. Blazek, and V. Leonhardt, “In-ear vital signs monitoring using a novel microoptic reflective sensor, IEEE Trans. Inform. Tech. Biomed., Vol. 1,3 No. 6, pp. 882-889, 2009.
[23]J. A. C. Patterson, D. C. Mcllwraith, and G. Z. Yang, “A flexible, low noise reflective PPG sensor platform for ear-worn heart rate monitoring, 6th International Workshop on Wearable and Implantable Body Sensor Networks, pp. 286-291, 2009.
[24]P. Celka, C. Verjus, R. Vetter, P. Renevey, and V. Neuman, “Motion resistant earphone located infrared based heart rate measurement device, 2nd International Conference on Biomedical Engineering, pp. 582-585, 2004.
[25]K. Budidha, and P. A. Kyriacou, “The human ear canal: investigation of its suitability for monitoring photoplethysmographs and arterial oxygen saturation, Institute of Physics and Engineering in Medicine, Physical Measurement, Vol. 35, No.2, pp. 111-128, 2014.
[26]M. Z. Poh, K. Kim, A. Goessling, N. Swenson, and R. Picard, “Cardiovascular monitoring using earphones and a mobile device, IEEE Pervasive Computing, Vol. 11, No. 4, pp. 18-26, 2010.
[27]M. Z. Poh, N. C. Swenson, and R. W. Picard, “Motion-tolerant magnetic earring sensor and wireless earpiece for wearable photoplethysmography, IEEE Trans. Inform. Tech. Biomed., Vol. 14, No. 3, pp. 786-794, 2010.
[28]M. Raghu Ram, K. Venu Madhav, E. Hari Krishna, K. Nagarjuna Reddy, and K. Ashoka Reddy, “Adaptive reduction of motion artifacts from PPG signals using a synthetic noise reference signal, IEEE EMBS Conference on Biomedical Engineering & Sciences, pp. 315-319, 2010.
[29]S. Rhee, B. H. Yang, and H. H. Asada, “Artifact-resistant power-efficient design of finger-ring plethysmographic sensors, IEEE Trans. Biomed., Vol. 48, No. 7, pp. 795-805, 2001.
[30]M. Elgendi, “On the analysis of fingertip photoplethysmogram signals, Current Cardiology Reviews, Vol. 8, pp. 14-25, 2012.
[31]R. Laulkar, and N. Daimiwal, “Applications of finger photoplethysmography, International Journal of Engineering Research and Applications, Vol. 2, No. 1, pp. 877-880, 2012.
[32]K. Shafqat, R. M. Langford, S. K. Pal, P. A. Kyriacou, “Estimation of venous oxygenation saturation using the finger photoplethysmography (PPG) waveform, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2905-2908, 2012.
[33]H. Hsiu, C. L. Hsu, and T. L. Wu, “A preliminary study on the correlation of frequency components between finger PPG and radial arterial BP waveforms, International Conference on Biomedical and Pharmceutical Engineering, pp. 1-4, 2009.
[34]Q. Yousef, M.B.I. Reaz, and M.A.M. Ali, “The analysis of PPG morphology: investigating the effects of aging on arterial compliance, Measurement Science Review, Vol. 12, No. 6, 2012.
[35]Z. Zhang, “Heart rate monitoring from wrist-type photoplethysmographic (PPG) signals during intensive physical exercise, IEEE GlobalSIP, pp. 698-702, 2014.
[36]Z. Zhang, Z. Pi, and B. Liu, “TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise, IEEE Transactions on Biomedical Engineering, Vol. 62, No. 2, pp. 522-531, 2015.
[37]H. Fukushima, H. Kawanaka, M.S. Bhuian, and K. Oquri, “Estimating heart rate using wrist-type photoplethysmography and acceleration sensor while running, 34th Annual International Conference of the IEEE EMBS, pp. 2901-2904, 2012.
[38]Z. Lin, J. Zhang, Y. Chen, and Q. Zhang, “Heart rate estimation using wrist-acquired photoplethysmography under different types of daily life motion artifact, IEEE International Conference on Communications (ICC), pp. 489-494, 2015.
[39]M.R. Grubb, J. Carpenter, J.A. Crowe, J. Teoh, N. Marlow, C. Ward, C. Mann, D. Sharkey, and B.R. Hayes-Gill, “Forehead reflectance photoplethysmography to monitor heart rate: preliminary results from neonatal patients, Institute of Physics and Engineering in Medicine Physiol. Meas., Vol. 35, No. 5, pp. 881-893, 2014.
[40]R. Dresher, “Wearable forehead pulse oximetry: minimization of motion and pressure artifacts, Thesis of Degree of Master of Science, Department of Biomedical Engineering, 2006.
[41]S. H. Kim, D. W. Ryoo, and C. Bae, “Adaptive noise cancellation using accelerometers for the PPG signal from forehead, 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2564-2567, 2007.
[42]Y. Maeda, M. Sekine, and T. Tamura, “Relationship between measurement site and motion artifacts in wearable reflected photoplethysmography, Journal of Medical Systems, Vol. 35, No. 5, pp. 969-976, 2010.
[43]Y. Maeda, M. Sekine, T. Tamura, A. Moriya, T. Suzuki, and K. Kameyama, “Comparison of reflected green light and infrared photoplethysmography, 30th Annual International Conference of the IEEE EMBS, 2008.
[44]J. Lee, K. Matsumura, T. Yamakoshi, P. Rolfe, and S. Tanaka, “Comparison between red, green, and blue light reflection photoplethysmography for heart rate monitoring during motion, 35th Annual International Conference of the IEEE EMBS, pp. 1724-1727, 2013.
[45]W. J. Cui, L. E. Ostrander, and B. Y. Lee, “In vivo reflectance of blood and tissue as a function of light wave length, IEEE Trans. Biomed., Vol. 37, pp. 632-639, 1990.
[46]R. R. Anderson, and J. A. Parrish, “The optics of human skin, J. Invest. Dermatol., Vol. 77, No. 1, pp. 13-19, 1981.
[47]A. Alzahrani, S, Hu, V. Azorin-Peris, L. Barrett, D. Esliger, M. Hayes, S. Akbare, J. Achart, and S. Kuoch, “A multi-channel opto-electronic sensor to accurately monitor heart rate against motion artefact during exercise, Sensors, Vol. 15, No. 10, pp. 25681-25702, 2015.
[48]T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, “Wearable photoplethysmographic sensors-past and present, Electronics, Vol. 3, No. 2, pp. 282-302, 2104.
[49]H. W. Lee, J. W. Lee, W. C. Jung, and G. K. Lee, “The periodic moving average filter for removing motion artifacts from PPG signals, Int. J. Ctrl. Autom. Syst., Vol. 5, No. 6, pp. 701-706, 2007.
[50]K. A. Reddy, B. George, and V. J. Kumar, “Use of Fourier series analysis for motion artifact reduction and data compression of photoplethysmographic signals, IEEE Trans. Instrum. Meas., Vol.58, No. 5, pp. 1706-1711, 2008.
[51]P. T. Gibbs, L. B. Wood, and H. H. Asada, “Active motion artifact cancellation for wearable health monitoring sensors using collocated MEMS acclerometers, Proceedings of SPIE – The International Society for Optical Engineering, Vol. 5765, doi:10.1117/12.600781, 2005.
[52]H. H. Asada, H. H. Jiang, and P. Gibbs, “Active noise cancellation using MEMS acclerometers for motion-tolereant wearable biosensors, Conf. Proc. IEEE. Eng. Med. Biol. Soc., Vol. 1, pp. 2157-2160, 2004.
[53]B. Lee, J. Han, H. J. Baek, J. H. Shin, K. S. Park, and W. J. Yi, “Improved elimination of motion artifacts from a photoplethysmographic signal using a Kalman smoother with simultaneous accelerometry, Physiological Measurement, IOPScience, Vol. 31, No. 12, pp. 1585-1603, 2010.
[54]J. Yao, and S. Warren, “A short study to assess the potential of independent component analysis for motion artifact separation in wearable pulse oximeter signals, Conf. Proc. IEEE Eng. Med. Biol. Soc., Vol. 4, pp. 3585-3588, 2005.
[55]M. Raghu, K. Venu Madhav, E. Hari Krishna, Nagarjuna Reddy Komalla, and K. Ashoka Reddy, “A novel approach for motion artifact reduction in PPG signals based on AS-LMS adaptive filter, IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 5, pp. 1445-1457, 2012.
[56]B. S. Kim, and S. K. Yoo, “Motion artifact reduction in photoplethy- smography using independene component analysis, IEEE Trans. Biomed. Eng., Vol.53, No. 3, pp. 566-568, 2006.
[57]B. M. Jayadevappa, and S. H. Mallikarjun, “An estimation technique using FFT for heart rate derived from PPG signal, Electrical and Electronics Engineering, Global Journal, Vol. 15, No. 7, 2015.
[58]H. Shin, C. Lee, and M. Lee, “Adaptive threshold method for the peak detection of photoplethysmographic waveform, Computers in Biology and Medicine, Vol. 39, No. 12, pp. 1145-1152, 2009.
[59]M. Elgendi, “Detection of a and b waves in the acceleration photoplethysmogram, Biomedical Engineering OnLine, doi: 10. 1186/1475-925X-13-139, 2014.
[60]SFH7050 BioMon Sensor Version 0.2, OSRAM, 2015.
[61]TCRT1000 Datasheet, VISHAY, 2013.
[62]SFH 7050 – Photoplethysmography Sensor Application Note, OSRAM, 2014.
[63]Single-supply, rail-to-rail operational amplifiers, Texas Instruments, 2014.
[64] “Photo diode vs photo transistor – difference between photo diode and photo transistor, RF Wireless World.
[65]Ultra-small, low-power, 16-bit, analog-to-digital converter with internal reference, Texas Instruments, 2009.
[66]周展,AccessPort 1.36,SUDT,2014。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊