|
1.Asada, Y., & Miyake, J. Photobiological hydrogen production. Journal of Bioscience and Bioengineering 88 (1):1-6. 1999 2.Basak, N., & Das, D. The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World Journal of Microbiology and Biotechnology, 23(1), 31-42. 2007 3.Basak, N., & Das, D. Photofermentative hydrogen production using purple non-sulfur bacteria Rhodobacter sphaeroides OU 001 in an annular photobioreactor: a case study. Biomass and Bioenergy, 33(6), 911-919. 2009 4.Beckers, L., Hiligsmann, S., Hamilton, C., Masset, J., & Thonart, P. Fermentative hydrogen production by Clostridium butyricum CWBI1009 and Citrobacter freundii CWBI952 in pure and mixed cultures/Production d'hydrogène par Clostridium butyricum CWBI1009 et Citrobacter freundii CWBI952 en cultures pures et mixtes. Biotechnologie, Agronomie, Société et Environnement, 14, 541. 2010 5.Chaubey, R., Sahu, S., James, O. O., & Maity, S. A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renewable and Sustainable Energy Reviews, 23, 443-462. 2013 6.Das, D., & Veziroǧlu, T. N. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26(1), 13-28. 2001 7.Das, D., Khanna, N., & Veziroğlu, N. T. Recent developments in biological hydrogen production processes. Chemical Industry and Chemical Engineering Quarterly/CICEQ, 14(2), 57-67. 2008 8.Elsharnouby, O., Hafez, H., Nakhla, G., & El Naggar, M. H. A critical literature review on biohydrogen production by pure cultures. International Journal of Hydrogen Energy, 38(12), 4945-4966. 2013 9.Fedorov, A. S., Tsygankov, A. A., Rao, K. K., & Hall, D. O. Hydrogen photoproduction by Rhodobacter sphaeroides immobilised on polyurethane foam. Biotechnology letters, 20(11), 1007-1009. 1998 10.Ghosh, D., Sobro, I. F., & Hallenbeck, P. C. Optimization of the hydrogen yield from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using response surface methodology. Bioresource technology, 123, 199-206. 2012 11.Girbal, L., Croux, C., Vasconcelos, I. and Soucaille, P. Regulation of metabolic shift in Clostridium acetobutylicum ATCC 824. FEMS Microbiol Rev 17:287-297. 1995 12.Ginkel, S. V., Sung, S., & Lay, J. J. Biohydrogen production as a function of pH and substrate concentration. Environmental science & technology, 35(24), 4726-4730. 2001 13.Kensy, F. T. Online monitoring in continuously shaken microtiter plates for scalable upstream bioprocessing (Doctoral dissertation, Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen). 2010 14.Kumar Gupta, S., Kumari, S., Reddy, K., & Bux, F. Trends in biohydrogen production: major challenges and state-of-the-art developments. Environmental technology, 34(13-14), 1653-1670. 2013 15.Levin, D. B., Pitt, L., & Love, M. Biohydrogen production: prospects and limitations to practical application. International journal of hydrogen energy, 29(2), 173-185. 2004 16.Liu, Y., Yu, P., Song, X., & Qu, Y. Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. International journal of hydrogen energy, 33(12), 2927-2933. 2008 17.Lo, Y. C., Bai, M. D., Chen, W. M., & Chang, J. S. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresource technology, 99(17), 8299-8303. 2008 18.Lu, W., Wen, J., Chen, Y., Sun, B., Jia, X., Liu, M., & Caiyin, Q. Synergistic effect of Candida maltosa HY-35 and Enterobacter aerogenes W-23 on hydrogen production. International journal of hydrogen energy, 32(8), 1059-1066. 2007 19.Masset, J., Calusinska, M., Hamilton, C., Hiligsmann, S., Joris, B., Wilmotte, A., & Thonart, P. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnology for biofuels, 5(1), 1. 2012 20.Maeda, K., Teramura, K., Lu, D., Takata, T., Saito, N., Inoue, Y., & Domen, K. Photocatalyst releasing hydrogen from water. Nature, 440(7082), 295-295. 2006 21.Melis, A., & Happe, T. Hydrogen production. Green algae as a source of energy. Plant physiology, 127(3), 740-748. 2001 22.Melis A., Green alga hydrogen production: progress, challenges and prospects. International Journal of Hydrogen Energy, 27, 1217-1228. 2002 23.Miyake, J. The science of biohydrogen: An energetic view. In BioHydrogen. Zaborsky, OR Ed., Plenum Press: New York, 7-18. 1998 24.Momirlan, M., & Veziroǧlu, T. Recent directions of world hydrogen production. Renewable and Sustainable Energy Reviews, 3(2), 219-231. 1999 25.Muhich, C. L., Evanko, B. W., Weston, K. C., Lichty, P., Liang, X., Martinek, J., ... & Weimer, A. W. Efficient generation of H2 by splitting water with an isothermal redox cycle. Science, 341(6145), 540-542. 2013 26.Ni, M., Leung, D. Y., Leung, M. K., & Sumathy, K. An overview of hydrogen production from biomass. Fuel processing technology, 87(5), 461-472. 2006 27.Pataki, D. E., Alig, R. J., Fung, A. S., Golubiewski, N. E., Kennedy, C. A., McPherson, E. G., ... & Romero Lankao, P. Urban ecosystems and the North American carbon cycle. Global Change Biology, 12(11), 2092-2102. 2006 28.Pan, C., Zhang, S., Fan, Y., & Hou, H. Bioconversion of corncob to hydrogen using anaerobic mixed microflora. International Journal of Hydrogen Energy, 35(7), 2663-2669. 2010 29.Sakaue, H., Huang, C. Y., & Sullivan, J. P. Optical hydrogen sensing method using temperature-sensitive luminophore on porous palladium. Sensors and Actuators B: Chemical, 155(1), 372-374. 2011 30.Schopf, J. W. The fossil record: tracing the roots of the cyanobacterial lineage. In The ecology of cyanobacteria (pp. 13-35). Springer Netherlands. 2000 31.Sekoai, P. T., & Kana, E. B. G. Fermentative biohydrogen modelling and optimization research in light of miniaturized parallel bioreactors. Biotechnology & Biotechnological Equipment, 27(4), 3901-3908. 2013 32.Seppälä, J. J., Puhakka, J. A., Yli-Harja, O., Karp, M. T., & Santala, V. Fermentative hydrogen production by Clostridium butyricum and Escherichia coli in pure and cocultures. international journal of hydrogen energy, 36(17), 10701-10708. 2011 33.Smith, G. D., Ewart, G. D., & Tucker, W. Hydrogen production by cyanobacteria. International journal of hydrogen energy, 17(9), 695-698. 1992 34.Teranishi, T., & Miyake, M. Size control of palladium nanoparticles and their crystal structures. Chemistry of Materials, 10(2), 594-600. 1998 35.Tsygankov, A. A., Fedorov, A. S., Laurinavichene, T. V., Gogotov, I. N., Rao, K. K., & Hall, D. O. Actual and potential rates of hydrogen photoproduction by continuous culture of the purple non-sulphur bacterium Rhodobacter capsulatus. Applied Microbiology and Biotechnology, 49(1), 102-107. 1998 36.Yetis, M., Gündüz, U., Eroglu, I., Yücel, M., & Türker, L. Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides OU 001. International Journal of Hydrogen Energy, 25(11), 1035-1041. 2000 37.Yoshida, A., Nishimura, T., Kawaguchi, H., Inui, M., & Yukawa, H. Enhanced hydrogen production from glucose using ldh-and frd-inactivated Escherichia coli strains. Applied microbiology and biotechnology, 73(1), 67-72. 2006 38.Yokoi, H., Tokushige, T., Hirose, J., Hayashi, S., & Takasaki, Y. H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnology Letters, 20(2), 143-147. 1998 39.Zhang, Z., Perozziello, G., Boccazzi, P., Sinskey, A. J., Geschke, O., & Jensen, K. F. Microbioreactors for bioprocess development. Journal of the Association for Laboratory Automation, 12(3), 143-151. 2007 40.Zhang, Z., Szita, N., Boccazzi, P., Sinskey, A. J., & Jensen, K. F. A well‐mixed, polymer‐based microbioreactor with integrated optical measurements. Biotechnology and bioengineering, 93(2), 286-296. 2006 41.Zhang, C., Yang, H., Yang, F., & Ma, Y. Current progress on butyric acid production by fermentation. Current microbiology, 59(6), 656-663. 2009 42.Zhu, H., Suzuki, T., Tsygankov, A. A., Asada, Y., & Miyake, J. Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. International Journal of Hydrogen Energy, 24(4), 305-310. 1999
|