|
1.Förster, S. and M. Antonietti, Amphiphilic block copolymers in structure‐controlled nanomaterial hybrids. Advanced Materials, 1998. 10(3): p. 195-217. 2.Letchford, K. and H. Burt, A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. European journal of pharmaceutics and biopharmaceutics, 2007. 65(3): p. 259-269. 3.Alexandridis, P., Amphiphilic copolymers and their applications. Current Opinion in Colloid & Interface Science, 1996. 1(4): p. 490-501. 4.Blanazs, A., S.P. Armes, and A.J. Ryan, Self‐assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromolecular rapid communications, 2009. 30(4‐5): p. 267-277. 5.Smart, T., et al., Block copolymer nanostructures. Nano Today, 2008. 3(3): p. 38-46. 6.Choucair, A. and A. Eisenberg, Control of amphiphilic block copolymer morphologies using solution conditions. The European Physical Journal E, 2003. 10(1): p. 37-44. 7.Matyjaszewski, K., Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules, 2012. 45(10): p. 4015-4039. 8.Matyjaszewski, K. and J. Xia, Atom transfer radical polymerization. Chemical reviews, 2001. 101(9): p. 2921-2990. 9.Patten, T.E. and K. Matyjaszewski, Atom transfer radical polymerization and the synthesis of polymeric materials. Advanced Materials, 1998. 10(12): p. 901-915. 10.Stolnik, S., L. Illum, and S. Davis, Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, 1995. 16(2): p. 195-214. 11.Nishiyama, N. and K. Kataoka, Nanostructured devices based on block copolymer assemblies for drug delivery: designing structures for enhanced drug function, in Polymer Therapeutics II. 2006, Springer. p. 67-101. 12.Mishra, D., J.R. Hubenak, and A.B. Mathur, Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy. Journal of Biomedical Materials Research Part A, 2013. 101(12): p. 3646-3660. 13.Zhang, L., et al., Nanoparticles in medicine: therapeutic applications and developments. Clinical pharmacology and therapeutics, 2008. 83(5): p. 761-769. 14.Shi, M., J. Lu, and M.S. Shoichet, Organic nanoscale drug carriers coupled with ligands for targeted drug delivery in cancer. Journal of Materials Chemistry, 2009. 19(31): p. 5485-5498. 15.Miyata, K., R.J. Christie, and K. Kataoka, Polymeric micelles for nano-scale drug delivery. Reactive and Functional Polymers, 2011. 71(3): p. 227-234. 16.Nishiyama, N. and K. Kataoka, Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacology & therapeutics, 2006. 112(3): p. 630-648. 17.Rapoport, N., Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progress in Polymer Science, 2007. 32(8): p. 962-990. 18.Torchilin, V., Targeted polymeric micelles for delivery of poorly soluble drugs. Cellular and Molecular Life Sciences CMLS, 2004. 61(19-20): p. 2549-2559. 19.Sanna, V., N. Pala, and M. Sechi, Targeted therapy using nanotechnology: focus on cancer. International journal of nanomedicine, 2014. 9: p. 467. 20.Matsumura, Y. and H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research, 1986. 46(12 Part 1): p. 6387-6392. 21.Kedar, U., et al., Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine: Nanotechnology, Biology and Medicine, 2010. 6(6): p. 714-729. 22.Cho, K., et al., Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research, 2008. 14(5): p. 1310-1316. 23.Yoo, H.S. and T.G. Park, Folate receptor targeted biodegradable polymeric doxorubicin micelles. Journal of Controlled Release, 2004. 96(2): p. 273-283. 24.Schmaljohann, D., Thermo-and pH-responsive polymers in drug delivery. Advanced drug delivery reviews, 2006. 58(15): p. 1655-1670. 25.Lutz, J.F., Polymerization of oligo (ethylene glycol)(meth) acrylates: toward new generations of smart biocompatible materials. Journal of Polymer Science Part A: Polymer Chemistry, 2008. 46(11): p. 3459-3470. 26.Sutton, D., et al., Functionalized micellar systems for cancer targeted drug delivery. Pharmaceutical research, 2007. 24(6): p. 1029-1046. 27.Gaucher, G., et al., Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of controlled release, 2005. 109(1): p. 169-188. 28.Allen, C., D. Maysinger, and A. Eisenberg, Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces, 1999. 16(1): p. 3-27. 29.Jette, K.K., et al., Preparation and drug loading of poly (ethylene glycol)-block-poly (ε-caprolactone) micelles through the evaporation of a cosolvent azeotrope. Pharmaceutical research, 2004. 21(7): p. 1184-1191. 30.Nakayama, M., J. Akimoto, and T. Okano, Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting. Journal of drug targeting, 2014. 22(7): p. 584-599. 31.Gil, E.S. and S.M. Hudson, Stimuli-reponsive polymers and their bioconjugates. Progress in polymer science, 2004. 29(12): p. 1173-1222. 32.Gibson, M.I. and R.K. O'Reilly, To aggregate, or not to aggregate? considerations in the design and application of polymeric thermally-responsive nanoparticles. Chemical society reviews, 2013. 42(17): p. 7204-7213. 33.Liu, R., M. Fraylich, and B.R. Saunders, Thermoresponsive copolymers: from fundamental studies to applications. Colloid and Polymer Science, 2009. 287(6): p. 627-643. 34.Schild, H.G., Poly (N-isopropylacrylamide): experiment, theory and application. Progress in polymer science, 1992. 17(2): p. 163-249. 35.Wei, H., et al., Thermo-sensitive polymeric micelles based on poly (N-isopropylacrylamide) as drug carriers. Progress in Polymer Science, 2009. 34(9): p. 893-910. 36.Lutz, J.-F., Ö. Akdemir, and A. Hoth, Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly (NIPAM) over? Journal of the American Chemical Society, 2006. 128(40): p. 13046-13047. 37.Dai, S., P. Ravi, and K.C. Tam, pH-Responsive polymers: synthesis, properties and applications. Soft Matter, 2008. 4(3): p. 435-449. 38.Chen, C.-Y., et al., pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials, 2013. 34(18): p. 4501-4509. 39.Shimizu, M. and T. Hiyama, Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chemistry–An Asian Journal, 2010. 5(7): p. 1516-1531. 40.Hu, R., N.L. Leung, and B.Z. Tang, AIE macromolecules: syntheses, structures and functionalities. Chemical Society Reviews, 2014. 43(13): p. 4494-4562. 41.Sapsford, K.E., L. Berti, and I.L. Medintz, Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angewandte Chemie International Edition, 2006. 45(28): p. 4562-4589. 42.Piston, D.W. and G.-J. Kremers, Fluorescent protein FRET: the good, the bad and the ugly. Trends in biochemical sciences, 2007. 32(9): p. 407-414. 43.Birks, J.B., Photophysics of aromatic molecules. 1970. 44.Hong, Y., J.W. Lam, and B.Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications. Chemical communications, 2009(29): p. 4332-4353. 45.Qin, A., J.W. Lam, and B.Z. Tang, Luminogenic polymers with aggregation-induced emission characteristics. Progress in polymer science, 2012. 37(1): p. 182-209. 46.Borovinskii, A.L. and A.R. Khokhlov, Micelle formation in the dilute solution mixtures of block-copolymers. Macromolecules, 1998. 31(22): p. 7636-7640. 47.Huang, C.K., et al., Multifunctional micelles for cancer cell targeting, distribution imaging, and anticancer drug delivery. Advanced Functional Materials, 2007. 17(14): p. 2291-2297. 48.Sarbu, T., et al., Synthesis of hydroxy-telechelic poly (methyl acrylate) and polystyrene by atom transfer radical coupling. Macromolecules, 2004. 37(26): p. 9694-9700. 49.Han, S., M. Hagiwara, and T. Ishizone, Synthesis of thermally sensitive water-soluble polymethacrylates by living anionic polymerizations of oligo (ethylene glycol) methyl ether methacrylates. Macromolecules, 2003. 36(22): p. 8312-8319. 50.Batz, H.G., G. Franzmann, and H. Ringsdorf, Model reactions for synthesis of pharmacologically active polymers by way of monomeric and polymeric reactive esters. Angewandte Chemie International Edition in English, 1972. 11(12): p. 1103-1104. 51.Jones, M.-C. and J.-C. Leroux, Polymeric micelles–a new generation of colloidal drug carriers. European journal of pharmaceutics and biopharmaceutics, 1999. 48(2): p. 101-111. 52.Chen, J., et al., Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1, 1-substituted 2, 3, 4, 5-tetraphenylsiloles. Chemistry of materials, 2003. 15(7): p. 1535-1546. 53.Sapra, P. and T.M. Allen, Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Research, 2002. 62(24): p. 7190-7194. 54.Gillies, E.R. and J.M. Fréchet, pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjugate chemistry, 2005. 16(2): p. 361-368.
|