(3.236.222.124) 您好!臺灣時間:2021/05/10 15:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳興群
研究生(外文):Hsing-ChunChen
論文名稱:功能性雙親性高分子混合微胞:製備、性質分析與在藥物載體上的應用
論文名稱(外文):Functional Polymeric Mixed Micelles Based on Amphiphilic Copolymers: Preparation, Characterization, and Application in Drug Carriers
指導教授:吳文中
指導教授(外文):Wen-Chung Wu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:100
中文關鍵詞:雙親性嵌段共聚高分子熱感性高分子酸鹼值敏感性質高分子葉酸聚集誘發螢光藥物釋放
外文關鍵詞:amphiphilic block copolymerthermo-responsive polymerpH-responsive polymerfolic acidaggregation-induced emissiondrug carriers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係針對三組具特殊功能之雙親性嵌段共聚高分子Poly(ɛ-caprolactone)-b-poly[triethylene glycol methacrylate-co- 6-(methacrylamido)hexanoic acid] [PCL-b-P(TEGMA-co-AHA)]、Poly(ɛ-caprolactone)-b-poly[triethylene glycol methacrylate-co- N-(2-(methacrylamido)ethyl) folatic amide] [PCL-b-P(TEGMA-co-FA)]與Poly(ɛ-caprolactone)-b-poly[triethylene glycol methacrylate-co- (2-(1,2,3,4,5-pentaphenyl-1H-silol-1-yloxy)ethyl methacrylate)] [PCL-b-P(TEGMA-co-(PPS-HEMA))] 一起於水溶液中自組裝形成之高分子混合微胞進行奈米結構、環境應答、螢光性質、標靶功能及此藥物載體系統對細胞毒性之探討與檢測。
PCL作為本系統中疏水鏈段構成微胞內核,用以包覆疏水性藥物(Doxorubicin, DOX),PTEGMA作為親水鏈段微胞外殼,用以增加微胞於水溶液中的穩定性並使高分子具有溫度響應性質。我們分別在三種組成混合微胞的高分子親水鏈段修飾上酸鹼敏感性單體AHA、具主動標靶功能的FA以及具有螢光特性單體PPS-HEMA,使各組雙親性嵌段共聚高分子具有特定的功能。
透過調整具酸鹼值響應單體AHA於親水鏈段中的比例及各組高分子於混合微胞中組成的比例可以調控高分子及混合微胞的最低臨界溶解溫度(lower critical solution temperature, LCST),使其達到於中性環境時LCST高於人體體溫37℃,於酸性環境時LCST低於37℃,因此在中性環境的血液循環中乘載藥物的混合微胞可以穩定存在,而當微胞進入酸性環境之癌細胞溶酶體時,微胞結構會因親疏水性的改變而被破壞使所乘載的藥物釋放。高分子上所修飾上的葉酸(FA)可與癌細胞表面的葉酸受體結合,使藥物能更有效地在目標細胞累積,我們修飾上不同比例的FA來探討FA對癌細胞標靶傳遞及細胞毒性的影響;而PPS-HEMA是具AIE性質的螢光物質,其放射波長與DOX的吸收波長重疊,因此當兩者距離夠近時會產生Föster Resonance Energy Transfer (FRET)效應,我們利用FRET作為判斷藥物是否成功包覆於微胞中及包覆量多寡的依據。

In this study, we prepare a mixed micelle system as drug carriers. The mixed micelles were co-assembled of three amphiphilic copolymers, [PCL-b-P(TEGMA-co-FA)], [PCL-b-P(TEGMA-co-AHA)] and [PCL-b-P(TEGMA-co-(PPS-HEMA))]. PCL block is hydrophobic and used as the core of micelle to encapsulate hydrophobic drug, DOX. PTEGMA block is thermo-sensitive and acts as the hydrophilic shell of micelle. In addition, we introduced the pH-sensitive, active targeting and fluorescent monomer (AHA, FA and PPS-HEMA) to the hydrophilic block by copolymerization the corresponding comonomers with TEGMA, respectively. The nanostructure, stimuli-responsive properties, active targeting properties, florescence behaviors and cytotoxicity for tumor cells were investigated. With delicate control of the composition of AHA in the hydrophilic block, the LCST of mixed micelles exhibited pH-dependent thermal transition behaviors suitable for drug delivery systems that LCST is higher than body temperature (37℃) at neutral environment but lower than body temperature at acidic environment. Therefore, the drug can be encapsulated in the core of micelle stably in blood circulation and released in tumor which is acidic because the micellar structure is destroyed. FA can conjugate with the targeted tumor with FA receptors overexpressed on the surface to make drug accumulate more efficiently. PPS-HEMA is a florescence monomer with AIE effect, and FRET will occur when the spectral overlap and close proximity between PPS-HEMA and DOX. Based on FRET effect, we are able to analyze if DOX was successfully encapsulated in the mixed micelle.
摘要 I
目錄 XIII
流程圖目錄 XV
表目錄 XVI
圖目錄 XVII
第1章、 緒論 1
1.1研究背景與文獻回顧 1
1.1.1雙親性嵌段共聚高分子(Amphiphilic block copolymers,ABCs) 1
1.1.2雙親性嵌段共聚高分子於藥物傳遞之應用 5
1.1.3 微胞製備 14
1.1.4功能性高分子 15
1.1.5 混合微胞(Mixed micelles) 30
1.2研究動機與目的 31
第2章、實驗 33
2.1實驗藥品 33
2.2實驗方法 36
2.2.1 單體合成 36
2.2.2 高分子聚合 39
2.2.3 微胞製備 46
2.2.4 Lower critical solution temperature (LCST)測試 46
2.2.5藥物包覆與釋放 46
2.3儀器鑑定 50
2.3.1 Gel permeation chromatography (GPC) 50
2.3.2 Nuclear Magnetic Resonance (NMR) 51
2.3.3 Dynamic Light Scattering (DLS) 51
2.3.4 Ultraviolet-Visilbe Spectroscopy (UV-vis.) 52
2.3.5 Photoluminescence Spectroscopy (PL) 52
第3章、結果與討論 53
3.1聚合與鑑定 53
3.1.1 Hydroxyethyl 2-bromoisobutyrate (HEBiB)合成 55
3.1.2 TEGMA單體合成 55
3.1.3 NSMA單體合成 56
3.1.4 PPS-HEMA單體合成 57
3.1.5 Poly(ɛ-Caprolactone)(PCL,P0)聚合 58
3.1.6雙親性嵌段共聚高分子poly(ɛ-caprolactone)-b-poly[triethylene glycol methacrylate-co- N-hydroxysuccinimide methacrylate] [PCL-b-P(TEGMA-co-NSMA),P1]之合成 61
3.1.7雙親性嵌段共聚高分子 [PCL-b-P(TEGMA-co-AHA)](P1-AHA)、 [PCL-b-P(TEGMA-co-FA)] (P2-FA、P3-FA)之合成 64
3.1.8雙親性嵌段共聚高分子[PCL-b-P(TEGMA-co-(PPS-HEMA))] (P4-AIE)之合成 68
3.2混合微胞的製備與性質鑑定 71
3.2.1溫度敏感性質 72
3.4藥物包覆與釋放測試 84
3.4.1藥物包覆 84
3.4.2藥物釋放 88
3.5細胞毒性測試 91
第4章、結論與未來工作 95
第5章、文獻回顧 97


1.Förster, S. and M. Antonietti, Amphiphilic block copolymers in structure‐controlled nanomaterial hybrids. Advanced Materials, 1998. 10(3): p. 195-217.
2.Letchford, K. and H. Burt, A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. European journal of pharmaceutics and biopharmaceutics, 2007. 65(3): p. 259-269.
3.Alexandridis, P., Amphiphilic copolymers and their applications. Current Opinion in Colloid & Interface Science, 1996. 1(4): p. 490-501.
4.Blanazs, A., S.P. Armes, and A.J. Ryan, Self‐assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromolecular rapid communications, 2009. 30(4‐5): p. 267-277.
5.Smart, T., et al., Block copolymer nanostructures. Nano Today, 2008. 3(3): p. 38-46.
6.Choucair, A. and A. Eisenberg, Control of amphiphilic block copolymer morphologies using solution conditions. The European Physical Journal E, 2003. 10(1): p. 37-44.
7.Matyjaszewski, K., Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules, 2012. 45(10): p. 4015-4039.
8.Matyjaszewski, K. and J. Xia, Atom transfer radical polymerization. Chemical reviews, 2001. 101(9): p. 2921-2990.
9.Patten, T.E. and K. Matyjaszewski, Atom transfer radical polymerization and the synthesis of polymeric materials. Advanced Materials, 1998. 10(12): p. 901-915.
10.Stolnik, S., L. Illum, and S. Davis, Long circulating microparticulate drug carriers. Advanced Drug Delivery Reviews, 1995. 16(2): p. 195-214.
11.Nishiyama, N. and K. Kataoka, Nanostructured devices based on block copolymer assemblies for drug delivery: designing structures for enhanced drug function, in Polymer Therapeutics II. 2006, Springer. p. 67-101.
12.Mishra, D., J.R. Hubenak, and A.B. Mathur, Nanoparticle systems as tools to improve drug delivery and therapeutic efficacy. Journal of Biomedical Materials Research Part A, 2013. 101(12): p. 3646-3660.
13.Zhang, L., et al., Nanoparticles in medicine: therapeutic applications and developments. Clinical pharmacology and therapeutics, 2008. 83(5): p. 761-769.
14.Shi, M., J. Lu, and M.S. Shoichet, Organic nanoscale drug carriers coupled with ligands for targeted drug delivery in cancer. Journal of Materials Chemistry, 2009. 19(31): p. 5485-5498.
15.Miyata, K., R.J. Christie, and K. Kataoka, Polymeric micelles for nano-scale drug delivery. Reactive and Functional Polymers, 2011. 71(3): p. 227-234.
16.Nishiyama, N. and K. Kataoka, Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacology & therapeutics, 2006. 112(3): p. 630-648.
17.Rapoport, N., Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progress in Polymer Science, 2007. 32(8): p. 962-990.
18.Torchilin, V., Targeted polymeric micelles for delivery of poorly soluble drugs. Cellular and Molecular Life Sciences CMLS, 2004. 61(19-20): p. 2549-2559.
19.Sanna, V., N. Pala, and M. Sechi, Targeted therapy using nanotechnology: focus on cancer. International journal of nanomedicine, 2014. 9: p. 467.
20.Matsumura, Y. and H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research, 1986. 46(12 Part 1): p. 6387-6392.
21.Kedar, U., et al., Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine: Nanotechnology, Biology and Medicine, 2010. 6(6): p. 714-729.
22.Cho, K., et al., Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research, 2008. 14(5): p. 1310-1316.
23.Yoo, H.S. and T.G. Park, Folate receptor targeted biodegradable polymeric doxorubicin micelles. Journal of Controlled Release, 2004. 96(2): p. 273-283.
24.Schmaljohann, D., Thermo-and pH-responsive polymers in drug delivery. Advanced drug delivery reviews, 2006. 58(15): p. 1655-1670.
25.Lutz, J.F., Polymerization of oligo (ethylene glycol)(meth) acrylates: toward new generations of smart biocompatible materials. Journal of Polymer Science Part A: Polymer Chemistry, 2008. 46(11): p. 3459-3470.
26.Sutton, D., et al., Functionalized micellar systems for cancer targeted drug delivery. Pharmaceutical research, 2007. 24(6): p. 1029-1046.
27.Gaucher, G., et al., Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of controlled release, 2005. 109(1): p. 169-188.
28.Allen, C., D. Maysinger, and A. Eisenberg, Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces, 1999. 16(1): p. 3-27.
29.Jette, K.K., et al., Preparation and drug loading of poly (ethylene glycol)-block-poly (ε-caprolactone) micelles through the evaporation of a cosolvent azeotrope. Pharmaceutical research, 2004. 21(7): p. 1184-1191.
30.Nakayama, M., J. Akimoto, and T. Okano, Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting. Journal of drug targeting, 2014. 22(7): p. 584-599.
31.Gil, E.S. and S.M. Hudson, Stimuli-reponsive polymers and their bioconjugates. Progress in polymer science, 2004. 29(12): p. 1173-1222.
32.Gibson, M.I. and R.K. O'Reilly, To aggregate, or not to aggregate? considerations in the design and application of polymeric thermally-responsive nanoparticles. Chemical society reviews, 2013. 42(17): p. 7204-7213.
33.Liu, R., M. Fraylich, and B.R. Saunders, Thermoresponsive copolymers: from fundamental studies to applications. Colloid and Polymer Science, 2009. 287(6): p. 627-643.
34.Schild, H.G., Poly (N-isopropylacrylamide): experiment, theory and application. Progress in polymer science, 1992. 17(2): p. 163-249.
35.Wei, H., et al., Thermo-sensitive polymeric micelles based on poly (N-isopropylacrylamide) as drug carriers. Progress in Polymer Science, 2009. 34(9): p. 893-910.
36.Lutz, J.-F., Ö. Akdemir, and A. Hoth, Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: is the age of poly (NIPAM) over? Journal of the American Chemical Society, 2006. 128(40): p. 13046-13047.
37.Dai, S., P. Ravi, and K.C. Tam, pH-Responsive polymers: synthesis, properties and applications. Soft Matter, 2008. 4(3): p. 435-449.
38.Chen, C.-Y., et al., pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials, 2013. 34(18): p. 4501-4509.
39.Shimizu, M. and T. Hiyama, Organic fluorophores exhibiting highly efficient photoluminescence in the solid state. Chemistry–An Asian Journal, 2010. 5(7): p. 1516-1531.
40.Hu, R., N.L. Leung, and B.Z. Tang, AIE macromolecules: syntheses, structures and functionalities. Chemical Society Reviews, 2014. 43(13): p. 4494-4562.
41.Sapsford, K.E., L. Berti, and I.L. Medintz, Materials for fluorescence resonance energy transfer analysis: beyond traditional donor–acceptor combinations. Angewandte Chemie International Edition, 2006. 45(28): p. 4562-4589.
42.Piston, D.W. and G.-J. Kremers, Fluorescent protein FRET: the good, the bad and the ugly. Trends in biochemical sciences, 2007. 32(9): p. 407-414.
43.Birks, J.B., Photophysics of aromatic molecules. 1970.
44.Hong, Y., J.W. Lam, and B.Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications. Chemical communications, 2009(29): p. 4332-4353.
45.Qin, A., J.W. Lam, and B.Z. Tang, Luminogenic polymers with aggregation-induced emission characteristics. Progress in polymer science, 2012. 37(1): p. 182-209.
46.Borovinskii, A.L. and A.R. Khokhlov, Micelle formation in the dilute solution mixtures of block-copolymers. Macromolecules, 1998. 31(22): p. 7636-7640.
47.Huang, C.K., et al., Multifunctional micelles for cancer cell targeting, distribution imaging, and anticancer drug delivery. Advanced Functional Materials, 2007. 17(14): p. 2291-2297.
48.Sarbu, T., et al., Synthesis of hydroxy-telechelic poly (methyl acrylate) and polystyrene by atom transfer radical coupling. Macromolecules, 2004. 37(26): p. 9694-9700.
49.Han, S., M. Hagiwara, and T. Ishizone, Synthesis of thermally sensitive water-soluble polymethacrylates by living anionic polymerizations of oligo (ethylene glycol) methyl ether methacrylates. Macromolecules, 2003. 36(22): p. 8312-8319.
50.Batz, H.G., G. Franzmann, and H. Ringsdorf, Model reactions for synthesis of pharmacologically active polymers by way of monomeric and polymeric reactive esters. Angewandte Chemie International Edition in English, 1972. 11(12): p. 1103-1104.
51.Jones, M.-C. and J.-C. Leroux, Polymeric micelles–a new generation of colloidal drug carriers. European journal of pharmaceutics and biopharmaceutics, 1999. 48(2): p. 101-111.
52.Chen, J., et al., Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1, 1-substituted 2, 3, 4, 5-tetraphenylsiloles. Chemistry of materials, 2003. 15(7): p. 1535-1546.
53.Sapra, P. and T.M. Allen, Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Research, 2002. 62(24): p. 7190-7194.
54.Gillies, E.R. and J.M. Fréchet, pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjugate chemistry, 2005. 16(2): p. 361-368.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔