|
(1) Joan L. Pellegrino. The BTX Chain: Benzene, Toluene, Xylene. Energy and Environmental Profile of the U.S. Chemical Industry 2000, 4, 105-141. (2) Waldron, K. J.; Rutherford, J. C.; Ford, D.; Robinson, N. J. Metalloproteins and metal sensing. Nature 2009, 460, 823-830. (3) Shanklin, J.; Whittle, E.; Fox, B. G. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry-Us 1994, 33, 12787-12794. (4) Broadwater, J. A.; Haas, J. A.; Fox, B. G. The fundamental, versatile role of diiron enzymes in lipid metabolism. Fett-Lipid 1998, 100, 103-113. (5) Lange, S. J.; Que, L. Oxygen activating nonheme iron enzymes. Curr Opin Chem Biol 1998, 2, 159-172. (6) Martin, C. E.; Oh, C. S.; Jiang, Y. D. Regulation of long chain unsaturated fatty acid synthesis in yeast. Bba-Mol Cell Biol L 2007, 1771, 271-285. (7) Shanklin, J.; Guy, J. E.; Mishra, G.; Lindqvist, Y. Desaturases: Emerging Models for Understanding Functional Diversification of Diiron-containing Enzymes. J Biol Chem 2009, 284, 18559-18563. (8) Vandeloo, F. J.; Broun, P.; Turner, S.; Somerville, C. An Oleate 12-hydroxylase from Ricinus-Communis L Is a Fatty Acyl Desaturase Homolog. P Natl Acad Sci USA 1995, 92, 6743-6747. (9) Dinamarca, M. A.; Aranda-Olmedo, I.; Puyet, A.; Rojo, F. Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals: Evidence from continuous cultures. J Bacteriol 2003, 185, 4772-4778. (10) Franklin, F. C. H.; Bagdasarian, M.; Bagdasarian, M. M.; Timmis, K. N. Molecular and Functional-Analysis of the Tol Plasmid Pwwo from Pseudomonas-Putida and Cloning of Genes for the Entire Regulated Aromatic Ring Meta-Cleavage Pathway. P Natl Acad Sci-Biol 1981, 78, 7458-7462. (11) Suzuki, M.; Hayakawa, T.; Shaw, J. P.; Rekik, M.; Harayama, S. Primary Structure of Xylene Monooxygenase - Similarities to and Differences from the Alkane Hydroxylation System. J Bacteriol 1991, 173, 1690-1695. (12) Harayama, S.; Kok, M.; Neidle, E. L. Functional and Evolutionary Relationships among Diverse Oxygenases. Annu Rev Microbiol 1992, 46, 565-601. (13) Bard, M.; Bruner, D. A.; Pierson, C. A.; Lees, N. D.; Biermann, B.; Frye, L.; Koegel, C.; Barbuch, R. Cloning and characterization of ERG25, the Saccharomyces cerevisiae gene encoding C-4 sterol methyl oxidase. P Natl Acad Sci USA 1996, 93, 186-190. (14) Oger, E.; Ghignone, S.; Campagnac, E.; Fontaine, J.; Grandmougin-Ferjani, A.; Lanfranco, L. Functional characterization of a C-4 sterol methyl oxidase from the endomycorrhizal fungus Glomus intraradices. Fungal Genet Biol 2009, 46, 486-495. (15) Aarts, M. G. M.; Keijzer, C. J.; Stiekema, W. J.; Pereira, A. Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 1995, 7, 2115-2127. (16) Shaw, J. P.; Harayama, S. Purification and Characterization of the Nadh - Acceptor Reductase Component of Xylene Monooxygenase Encoded by the Tol Plasmid Pww0 of Pseudomonas-Putida Mt-2. Eur J Biochem 1992, 209, 51-61. (17) Tshuva, E. Y.; Lee, D.; Bu, W. M.; Lippard, S. J. Catalytic oxidation by a carboxylate-bridged non-heme diiron complex. J Am Chem Soc 2002, 124, 2416-2417. (18) Behan, R. K.; Lippard, S. J. The Aging-Associated Enzyme CLK-1 Is a Member of the Carboxylate-Bridged Diiron Family of Proteins. Biochemistry-Us 2010, 49, 9679-9681. (19) Schenkman, J. B.; Jansson, I. The many roles of cytochrome b(5). Pharmacol Therapeut 2003, 97, 139-152. (20) Bau, R.; Rees, D. C.; Kurtz, D. M.; Scott, R. A.; Huang, H. S.; Adams, M. W. W.; Eidsness, M. K. Crystal structure of rubredoxin from Pyrococcus furiosus at 0.95 angstrom resolution, and the structures of N-terminal methionine and formylmethionine variants of Pf Rd. Contributions of N-terminal interactions to thermostability. J Biol Inorg Chem 1998, 3, 484-493. (21) Kurisu, G.; Kusunoki, M.; Katoh, E.; Yamazaki, T.; Teshima, K.; Onda, Y.; Kimata-Ariga, Y.; Hase, T. Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase. Nat Struct Biol 2001, 8, 117-121. (22) Armengaud, J.; Sainz, G.; Jouanneau, Y.; Sieker, L. C. Crystallization and preliminary X-ray diffraction analysis of a [2Fe-2S] ferredoxin (FdVI) from Rhodobacter capsulatus. Acta Crystallogr D 2001, 57, 301-303. (23) Nielsen, M. S.; Harris, P.; Ooi, B. L.; Christensen, H. E. M. The 1.5 angstrom resolution crystal structure of [Fe3S4]-ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus. Biochemistry-Us 2004, 43, 5188-5194. (24) Fukuyama, K.; Matsubara, H.; Tsukihara, T.; Katsube, Y. Structure of [4fe-4s] Ferredoxin from Bacillus-Thermoproteolyticus Refined at 2.3-a Resolution - Structural Comparisons of Bacterial Ferredoxins. J Mol Biol 1989, 210, 383-398. (25) Prenafeta-Boldu, F. X.; Kuhn, A.; Luykx, D. M. A. M.; Anke, H.; van Groenestijn, J. W.; de Bont, J. A. M. Isolation and characterisation of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol Res 2001, 105, 477-484. (26) Van Beilen, J. B.; Li, Z.; Duetz, W. A.; Smits, T. H. M.; Witholt, B. Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 2003, 58, 427-440. (27) Wentzel, A.; Ellingsen, T. E.; Kotlar, H. K.; Zotchev, S. B.; Throne-Holst, M. Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biot 2007, 76, 1209-1221. (28) Norbert, G. S.-C. Chemical contamination of the environment: sources, types, and fate of synthrtic organic chemicals 1995. G. Y. a. C. E. Cerniglia, Wiley-Liss, D. C.: 27- 74. (29) Yen, K. M.; Gunsalus, I. C. Regulation of Naphthalene Catabolic Genes of Plasmid Nah7. J Bacteriol 1985, 162, 1008-1013. (30) Suen, W. C.; Gibson, D. T. Isolation and Preliminary Characterization of the Subunits of the Terminal Component of Naphthalene Dioxygenase from Pseudomonas-Putida Ncib 9816-4. J Bacteriol 1993, 175, 5877-5881. (31) Buhler, B.; Schmid, A.; Hauer, B.; Witholt, B. Xylene monooxygenase catalyzes the multistep oxygenation of toluene and pseudocumene to corresponding alcohols, aldehydes, and acids in Escherichia coli JM101. J Biol Chem 2000, 275, 10085-10092. (32) Harayama, S.; Rekik, M.; Wubbolts, M.; Rose, K.; Leppik, R. A.; Timmis, K. N. Characterization of 5 Genes in the Upper-Pathway Operon of Tol Plasmid Pww0 from Pseudomonas-Putida and Identification of the Gene-Products. J Bacteriol 1989, 171, 5048-5055. (33) Batie C. J; Ballou D. P; Correll C. C. Phthalate dioxygenase reductase and related flavin– iron–sulfur containing electron transferases 1991. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes. CRC, Boca Raton, FL, pp 544–556 (34) Nam, J. W.; Nojiri, H.; Yoshida, T.; Habe, H.; Yamane, H.; Omori, T. New classification system for oxygenase components involved in ring-hydroxylating oxygenations. Biosci Biotech Bioch 2001, 65, 254-263. (35) Kweon O, Kim S. J; Baek S; Chae J. C; Adjei M. D; Baek D. H; Kim Y.C; Cerniglia C.E. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases 2008. BMC Biochemistry 9:11. (36) Ashikawa, Y.; Fujimoto, Z.; Noguchi, H.; Habe, H.; Omori, T.; Yamane, H.; Nojiri, H. Electron transfer complex formation between oxygenase and ferredoxin components in Rieske nonheme iron oxygenase system. Structure 2006, 14, 1779-1789. (37) Ferraro, D. J.; Gakhar, L.; Ramaswamy, S. Rieske business: Structure-function of Rieske non-heme oxygenases. Biochem Bioph Res Co 2005, 338, 175-190. (38) Zylstra, G. J.; Wang, X. P.; Kim, E. B.; Didolkar, V. A. Cloning and Analysis of the Genes for Polycyclic Aromatic Hydrocarbon Degradation. Ann Ny Acad Sci 1994, 721, 386-398. (39) Nolan, L. C.; O'Connor, K. E. Dioxygenase- and monooxygenase-catalysed synthesis of cis-dihydrodiols, catechols, epoxides and other oxygenated products. Biotechnol Lett 2008, 30, 1879-1891. (40) Colby, J.; Dalton, H. Resolution of Methane Mono-Oxygenase of Methylococcus-Capsulatus-Bath into 3 Components - Purification and Properties of Component-C, a-Flavoprotein. Biochem J 1978, 171, 461-468. (41) Austin, R. N.; Buzzi, K.; Kim, E.; Zylstra, G. J.; Groves, J. T. Xylene monooxygenase, a membrane-spanning non-heme diiron enzyme that hydroxylates hydrocarbons via a substrate radical intermediate. J Biol Inorg Chem 2003, 8, 733-740. (42) Gerdemann, C.; Eicken, C.; Krebs, B. The crystal structure of catechol oxidase: New insight into the function of type-3 copper proteins. Accounts Chem Res 2002, 35, 183-191. (43) Kovaleva, E. G.; Neibergall, M. B.; Chakrabarty, S.; Lipscomb, J. D. Finding intermediates in the O-2 activation pathways of non-heme iron oxygenases. Accounts Chem Res 2007, 40, 475-483. (44) Sakurai, T.; Kataoka, K. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem Rec 2007, 7, 220-229. (45) Bugg, T. D. H.; Ramaswamy, S. Non-heme iron-dependent dioxygenases: unravelling catalytic mechanisms for complex enzymatic oxidations. Curr Opin Chem Biol 2008, 12, 134-140. (46) Maji, S.; Lee, J. C. M.; Lu, Y. J.; Chen, C. L.; Hung, M. C.; Chen, P. P. Y.; Yu, S. S. F.; Chan, S. I. Dioxygen Activation of a Trinuclear CuICuICuI Cluster Capable of Mediating Facile Oxidation of Organic Substrates: Competition between O-Atom Transfer and Abortive Intercomplex Reduction. Chem-Eur J 2012, 18, 3955-3968. (47) Bai, Y. H.; McCoy, J. G.; Levin, E. J.; Sobrado, P.; Rajashankar, K. R.; Fox, B. G.; Zhou, M. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature 2015, 524, 252-+. (48) Man, W. C.; Miyazaki, M.; Chu, K.; Ntambi, J. M. Membrane topology of mouse stearoyl-CoA desaturase 1. J Biol Chem 2006, 281, 1251-1260. (49) Wubbolts, M. G.; Reuvekamp, P.; Witholt, B. Tol Plasmid-Specified Xylene Oxygenase Is a Wide Substrate Range Monooxygenase Capable of Olefin Epoxidation. Enzyme Microb Tech 1994, 16, 608-615. (50) Uslu, B.; Ozkan, S. A. Electroanalytical Methods for the Determination of Pharmaceuticals: A Review of Recent Trends and Developments. Anal Lett 2011, 44, 2644-2702. (51) Mabbott, G. A. An Introduction to Cyclic Voltammetry. J Chem Educ 1983, 60, 697-702. (52) Kendrew, J. C.; Bodo, G.; Dintzis, H. M.; Parrish, R. G.; Wyckoff, H.; Phillips, D. C. 3-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis. Nature 1958, 181, 662-666. (53) Bradford, M. M. Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. Anal Biochem 1976, 72, 248-254. (54) Jaganaman, S.; Pinto, A.; Tarasev, M.; Ballou, D. P. High levels of expression of the iron-sulfur proteins phthalate dioxygenase and phthalate dioxygenase reductase in Escherichia coli. Protein Expres Purif 2007, 52, 273-279. (55) McClay, K.; Boss, C.; Keresztes, I.; Steffan, R. J. Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments. Appl Environ Microb 2005, 71, 5476-5483. (56) Rui, L. Y.; Reardon, K. F.; Wood, T. K. Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl Microbiol Biot 2005, 66, 422-429. (57) Naing, S. H.; Parvez, S.; Pender-Cudlip, M.; Groves, J. T.; Austin, R. N. Substrate specificity and reaction mechanism of purified alkane hydroxylase from the hydrocarbonoclastic bacterium Alcanivorax borkumensis (AbAlkB). J Inorg Biochem 2013, 121, 46-52. (58) Gutmann, D. A. P.; Mizohata, E.; Newstead, S.; Ferrandon, S.; Postis, V.; Xia, X. B.; Henderson, P. J. F.; Van Veen, H. W.; Byrne, B. A high-throughput method for membrane protein solubility screening: The ultracentrifugation dispersity sedimentation assay (vol 16, pg 1422, 2007). Protein Sci 2007, 16, 2775-2775. (59) Abril, M. A.; Michan, C.; Timmis, K. N.; Ramos, J. L. Regulator and Enzyme Specificities of the Tol Plasmid-Encoded Upper Pathway for Degradation of Aromatic-Hydrocarbons and Expansion of the Substrate Range of the Pathway. J Bacteriol 1989, 171, 6782-6790. (60) Alonso, H.; Kleifeld, O.; Yeheskel, A.; Ong, P. C.; Liu, Y. C.; Stok, J. E.; De Voss, J. J.; Roujeinikova, A. Structural and mechanistic insight into alkane hydroxylation by Pseudomonas putida AlkB. Biochem J 2014, 460, 283-293. (61) Alonso, H.; Roujeinikova, A. Characterization and Two-Dimensional Crystallization of Membrane Component AlkB of the Medium-Chain Alkane Hydroxylase System from Pseudomonas putida GPo1. Appl Environ Microb 2012, 78, 7946-7953. (62) Bahar, M.; de Majnik, J.; Wexler, M.; Fry, J.; Poole, P. S.; Murphy, P. J. A model for the catabolism of rhizopine in Rhizobium leguminosarum involves a ferredoxin oxygenase complex and the inositol degradative pathway. Mol Plant Microbe In 1998, 11, 1057-1068. (63) Bernaudat, F.; Frelet-Barrand, A.; Pochon, N.; Dementin, S.; Hivin, P.; Boutigny, S.; Rioux, J. B.; Salvi, D.; Seigneurin-Berny, D.; Richaud, P.; Joyard, J.; Pignol, D.; Sabaty, M.; Desnos, T.; Pebay-Peyroula, E.; Darrouzet, E.; Vernet, T.; Rolland, N. Heterologous expression of membrane proteins: choosing the appropriate host. PLoS One 2011, 6, 29191. (64) Bramucci, M.; Singh, M.; Nagarajan, V. Biotransformation of p-xylene and 2,6-dimethylnaphthalene by xylene monooxygenase cloned from a Sphingomonas isolate. Appl Microbiol Biot 2002, 59, 679-684. (65) Buhler, B.; Bollhalder, I.; Hauer, B.; Witholt, B.; Schmid, A. Chemical biotechnology for the specific oxyfunctionalization of hydrocarbons on a technical scale. Biotechnol Bioeng 2003, 82, 833-842. (66) Buhler, B.; Witholt, B.; Hauer, B.; Schmid, A. Characterization and application of xylene monooxygenase for multistep biocatalysis. Appl Environ Microb 2002, 68, 560-568. (67) Cooper, H. L. R.; Mishra, G.; Huang, X. Y.; Pender-Cudlip, M.; Austin, R. N.; Shanklin, J.; Groves, J. T. Parallel and Competitive Pathways for Substrate Desaturation, Hydroxylation, and Radical Rearrangement by the Non-heme Diiron Hydroxylase AlkB. J Am Chem Soc 2012, 134, 20365-20375. (68) Ding, H. G.; Demple, B. Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. P Natl Acad Sci USA 2000, 97, 5146-5150. (69) Duetz, W. A.; van Beilen, J. B.; Witholt, B. Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotech 2001, 12, 419-425. (70) Farghaly, O. A.; Hameed, R. S. A.; Abu-Nawwas, A. A. H. Analytical Application Using Modern Electrochemical Techniques. Int J Electrochem Sc 2014, 9, 3287-3318. (71) Groves, J. T. High-valent iron in chemical and biological oxidations. J Inorg Biochem 2006, 100, 434-447. (72) Harayama, S.; Inoue, J.; Shaw, J. P.; Rekik, M. Characterization of Xylene Monooxygenase, Benzyl Alcohol-Dehydrogenase and Benzaldehyde Dehydrogenase Encoded by Tol Plasmid of Pseudomonas-Putida. J Cell Biochem 1995, 39-39. (73) Harayama, S.; Mermod, N.; Rekik, M.; Lehrbach, P. R.; Timmis, K. N. Roles of the Divergent Branches of the Meta-Cleavage Pathway in the Degradation of Benzoate and Substituted Benzoates. J Bacteriol 1987, 169, 558-564. (74) Heath, S. L.; Charnock, J. M.; Garner, C. D.; Powell, A. K. Extended X-ray absorption fine structure (EXAFS) studies of hydroxo(oxo)iron aggregates and minerals, and a critique of their use as models for ferritin. Chem-Eur J 1996, 2, 634-639. (75) Kelley, L. A.; Sternberg, M. J. E. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 2009, 4, 363-371. (76) Kiener, A. Enzymatic Oxidation of Methyl-Groups on Aromatic Heterocycles - a Versatile Method for the Preparation of Heteroaromatic Carboxylic-Acids. Angew Chem Int Edit 1992, 31, 774-775. (77) Lewis, J. C.; Coelho, P. S.; Arnold, F. H. Enzymatic functionalization of carbon-hydrogen bonds. Chem Soc Rev 2011, 40, 2003-2021. (78) Liang, A. D.; Wrobel, A. T.; Lippard, S. J. A Flexible Glutamine Regulates the Catalytic Activity of Toluene o-Xylene Monooxygenase. Biochemistry-Us 2014, 53, 3585-3592. (79) Lo, F. C.; Lee, J. F.; Liaw, W. F.; Hsu, I. J.; Tsai, Y. F.; Chan, S. I.; Yu, S. S. F. The Metal Core Structures in the Recombinant Escherichia coli Transcriptional Factor SoxR. Chem-Eur J 2012, 18, 2565-2577. (80) Maruyama, T.; Iida, H.; Kakidani, H. Oxidation of both termini of p- and m-xylene by Escherichia coli transformed with xylene monooxygenase gene. J Mol Catal B-Enzym 2003, 21, 211-219. (81) Meyer, D.; Witholt, B.; Schmid, A. Suitability of recombinant Escherichia coli and Pseudomonas putida strains for selective biotransformation of m-nitrotoluene by xylene monooxygenase. Appl Environ Microb 2005, 71, 6624-6632. (82) Murray, L. J.; Garcia-Serres, R.; McCormick, M. S.; Davydov, R.; Naik, S. G.; Kim, S. H.; Hoffman, B. M.; Huynh, B. H.; Lippard, S. J. Dioxygen activation at non-heme diiron centers: Oxidation of a proximal residue in the I100W variant of toluene/o-xylene monooxygenase hydroxylase. Biochemistry-Us 2007, 46, 14795-14809. (83) Notomista, E.; Cafaro, V.; Bozza, G.; Di Donato, A. Molecular Determinants of the Regioselectivity of Toluene/o-Xylene Monooxygenase from Pseudomonas sp Strain OX1. Appl Environ Microb 2009, 75, 823-836. (84) Otenio, M. H.; da Silva, M. T. L.; Marques, M. L. O.; Roseiro, J. C.; Bidoia, E. D. Benzene, toluene and xylene biodegradation by Pseudomonas putida CCMI 852. Braz J Microbiol 2005, 36, 258-261. (85) Py, B.; Barras, F. Building Fe-S proteins: bacterial strategies. Nat Rev Microbiol 2010, 8, 436-446. (86) Riggs-Gelasco, P. J.; Price, J. C.; Guyer, R. B.; Brehm, J. H.; Barr, E. W.; Bollinger, J. M.; Krebs, C. EXAFS spectroscopic evidence for an Fe = O unit in the Fe(IV) intermediate observed during oxygen activation by taurine :alpha-ketoglutarate dioxygenase. J Am Chem Soc 2004, 126, 8108-8109. (87) Sayanova, O.; Beaudoin, F.; Libisch, B.; Castel, A.; Shewry, P. R.; Napier, J. A. Mutagenesis and heterologous expression in yeast of a plant Delta(6)-fatty acid desaturase. J Exp Bot 2001, 52, 1581-1585. (88) Scarrow, R. C.; Maroney, M. J.; Palmer, S. M.; Que, L.; Roe, A. L.; Salowe, S. P.; Stubbe, J. Exafs Studies of Binuclear Iron Proteins - Hemerythrin and Ribonucleotide Reductase. J Am Chem Soc 1987, 109, 7857-7864. (89) Schmidt, T. G. M.; Skerra, A. The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2007, 2, 1528-1535. (90) Shu, L. J.; Broadwater, J. A.; Achim, C.; Fox, B. G.; Munck, E.; Que, L. EXAFS and Mossbauer characterization of the Diiron(III) site in stearoyl-acyl carrier protein Delta(9-) desaturase. Journal of Biological Inorganic Chemistry 1998, 3, 392-400. (91) Sonmez, B.; Yanik-Yildirim, K. C.; Wood, T. K.; Vardar-Schara, G. The Role of Substrate Binding Pocket Residues Phenylalanine 176 and Phenylalanine 196 on Pseudomonas sp OX1 Toluene o-Xylene Monooxygenase Activity and Regiospecificity. Biotechnol Bioeng 2014, 111, 1506-1512. (92) Thiede, B.; Hohenwarter, W.; Krah, A.; Mattow, J.; Schmid, M.; Schmidt, F.; Jungblut, P. R. Peptide mass fingerprinting. Methods 2005, 35, 237-247. (93) Tinberg, C. E.; Tonzetich, Z. J.; Wang, H. X.; Do, L. H.; Yoda, Y.; Cramer, S. P.; Lippard, S. J. Characterization of Iron Dinitrosyl Species Formed in the Reaction of Nitric Oxide with a Biological Rieske Center. J Am Chem Soc 2010, 132, 18168-18176. (94) Wagner, S.; Klepsch, M. M.; Schlegel, S.; Appel, A.; Draheim, R.; Tarry, M.; Hogbom, M.; van Wijk, K. J.; Slotboom, D. J.; Persson, J. O.; de Gier, J. W. Tuning Escherichia coli for membrane protein overexpression. P Natl Acad Sci USA 2008, 105, 14371-14376. (95) Worsey, M. J.; Williams, P. A. Metabolism of Toluene and Xylenes by Pseudomonas (Putida (Arvilla) Mt-2 - Evidence for a New Function of Tol Plasmid. J Bacteriol 1975, 124, 7-13. (96) Xiao, G. B.; Pan, C. B.; Cai, Y. Z.; Lin, H.; Fu, Z. M. Effect of benzene, toluene, xylene on the semen quality and the function of accessory gonad of exposed workers. Ind Health 2001, 39, 206-210. (97) 林姿綺. 網版印刷電極應用在藥物分析上之研究. 國立中興大學, 2001. (98) 邱梅欣. 多元性可拋棄式網版印刷電極分析技術平台之建立與應用. 國立中興大學, 2009. (99) 鍾協訓. 網版印刷電極在分析化學上的應用與發展. 國立中興大學, 2002.
|