(3.236.231.61) 您好!臺灣時間:2021/05/15 23:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭宇喬
研究生(外文):YU-CHIAOCHENG
論文名稱:基因轉殖二甲苯單加氧酵素以催化烷基苯類化合物氧化選擇性的探討
論文名稱(外文):Regio-Selective Oxidation of Alkyl Benzene Catalyzed by Recombinant Xylene Monooxygenase from Pseudomonas putida mt-2
指導教授:俞聖法許鏵芬
指導教授(外文):Sheng-Fa YuHua-Fen Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:85
中文關鍵詞:二甲苯單加氧酵素X光吸收光譜電化學催化
外文關鍵詞:Xylene monooxygenase (XylM)XANESEXAFSElectrocatalysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
甲苯類化合物之催化為現今社會重要的課題,不論是在工業應用亦或是環境污染物分解皆與其相關,本實驗以具有此特性的二甲苯單加氧酵素為研究目標。
二甲苯單加氧酵素為一具有非血基質雙鐵反應中心的膜結合型去飽和酶超級家族蛋白(membrane-bound desaturase superfamily),由於此類蛋白如何對反應物進行催化的相關研究相對少,此研究除了常見的全細胞催化反應外,我們也使用電化學的催化模式進行探討,進而發現二甲苯單甲氧酵素可以由電極進行直接電子轉移接受電子,在最後的催化結果可以認定二甲苯單加氧酵素為一具有苯環上甲基選擇性的的蛋白,對於甲苯衍生物有相當大的發展性。
再加上至今世界上僅有少數膜蛋白的立體結構被解析出,因此在現階段之研究只能夠透過 X 光吸收光譜或電化學分析其反應中心的金屬配位。經由數據分析後的結果可以推測出二甲苯單加氧酵素雙鐵中心鍵結的氨基酸,以及初步了解反應物與蛋白之間作用的關聯性。

Catalytic oxidation of toluene derivatives exhibits application for fine chemical supply in chemical industry. The corresponding transformation is essential to the remediation of environmental pollutants. XylMA system encoded by TOL plasmid for the protein expression of xylene monooxygenase (XylM) and its reductase (XylA) from Pseudomonas putida mt-2 was selected for an in-depth study. E. coli was employed as a host for their heterogeneously expression and purification. The catalytic conversions of alkyl benzenes were not only carried out by the whole cell catalysis mediated by the co-transformation of XylMA in E. coli system. To simplify the catalytic reaction without imposing expensive cofactor protein(s) or coenzymes, i.e. NAD(P)H, we herein also developed a facile electrochemical transformation system to conduct the direct electron transfer (DET) either directly to the intracytoplasmic membranes enriched with recombinant XylM or mediated by the iron-sulfur cofactor proteins such as XylA towards XylM protein. The X-ray absorption spectroscopy (XAS) studies of purified XylM was performed and displayed the core structure of active center in XylM protein is non-heme diiron center. Similar to recent discovery of the crystal structure of a mammalian stearoyl-CoA desaturase (Mouse SCD1), His-box (8-histidine motif) is essential for the coordination of the iron core complexes.
Keywords: Xylene monooxygenase (XylM); XANES, EXAFS; Electrocatalysis
目錄
摘要……………………………………………………..…I
Extended Abstract………………………...II
謝誌………………………………………….………VIII
目錄…………………………………………………………X
表目錄…………………………………………....XVI
圖目錄…………………………………....XVII
第一章 緒論…………………………………………………….……1
1.1、BTX苯環類化合物的催化……………….……………….1
1.2、二甲苯單甲氧酵素複合體……………………………………………………….2
1.3、XylM催化活性的研究………………………..…..…………………………….15
1.4、表現載體………………………………………… ………………………………...16
1.5、X光吸收近邊緣結構(XANES)與
延伸X光吸收近邊緣細細微結構(EXAFS)分析法............17
1.6、西方墨點法(Western blot)..........................19
1.7、電化學分析(electrochemical analysis)................20
1.7.1、循環伏安法(cyclic voltammetry, CV) ..............20
1.7.2、安培法(amperometry, i-t curve) .....................22
1.7.3、網版印刷碳電極......................................23
第二章 實驗…………………………………………………………………..……........25
2.1、實驗材料…………............……………….…………..25
2.1.1、實驗菌種..........…….......…………………......……..…..25
2.1.2、載體DNA.............………………………….......25
2.1.3、實驗藥品.............………………….…….………….....25
2.2、實驗儀器…….……..…………........…..................28
2.2.1、旋轉式恆溫震盪培養箱(Orbital Shanker Incubator) ……...28
2.2.2、發酵槽(fermentor) ……….………….............…......28
2.2.3、CH, Instruments……….…………..........………..........28
2.2.4、落地型冷凍高速離心機(Ultra Centrifuge) …….…...…....28
2.2.5、超高速冷凍離心機(Ultra Centrifuge) …….....……….......29
2.2.6、照膠系統(UVP) …….………….....................………....29
2.2.7、高壓均質機(French press) …….………….........…........29
2.2.8、氣相層析質譜儀
(Gas Chromatography Mass Spectrometer GC-MS) ..…......29
2.2.9、氣相層析儀(Gas Chromatography, GC) ………............29
2.3、實驗流程…….…………...............................29
2.4、實驗方法…….………….....................………..............30
2.4.1、基因選殖、基因分析與共同表現質體構築................…..30
2.4.1.1、二甲苯單加氧酶複合體蛋白(xylene monooxygenase complex)
之基因選殖、基因分析與共同表現質體構築...................30
2.4.1.2、二甲苯單加氧酶(Xylene monooxygenase, XylM)
之基因選殖與共同表現質體構築...............................31
2.4.1.3、甲苯單加氧酶其電子傳遞蛋白(Xylene monooxygenase electron transfer component, XylA)之基因選殖與共同表現質體構築..................................................................................................32
2.4.2、二甲苯單加氧酶其電子傳遞蛋白(Xylene monooxygenase electron transfer component, XylA)質體基因表現..................................................................................................33
2.4.3、二甲苯單加氧酶其電子傳遞蛋白(Xylene monooxygenase electron transfer component, XylA)蛋白質純化............................................33
2.4.3.1、進Nickel-column前處理....................................................33
2.4.3.2、Nickel-column 純化….......................................................33
2.4.4、二甲苯單加氧酶其電子傳遞蛋白(Xylene monooxygenase electron transfer component, XylA) 西方墨點分析 (Western blotting)..........34
2.4.5、二甲苯單加氧酶其電子傳遞蛋白(Xylene monooxygenase electron transfer component, XylA)含鐵離子定量(ICP_O..............................34
2.4.6、二甲苯單加氧酶其電子傳遞蛋白(Xylene monooxygenase electron transfer component, XylA) X光吸收近邊緣結構(XANES)
與延伸X光吸收近邊緣細細微結構(EXAFS)分析法..............................35
2.4.6.1、樣品製備...........................................................................35
2.4.6.2、XANES與EXAFS數據處理.................................................35
2.4.7、二甲苯單加氧酶(Xylene monooxygenase, XylM)
質體基因表現.................................................................................35
2.4.8、二甲苯單加氧酶(Xylene monooxygenase, XylM)
蛋白質純化....................................................................................35
2.4.8.1、進Strep-Tactin sepharose column 前處理........................35
2.4.8.2、Strep-Tactin sepharose column純化...............................36
2.4.9、二甲苯單加氧酶(Xylene monooxygenase, XylM)之西方墨點分析 (Western blotting) .......................................................................36
2.4.10、二甲苯單加氧酶(Xylene monooxygenase, XylM)
含鐵離子定量(ICP_OES) ................................................................36
2.4.11、二甲苯單加氧酶(Xylene monooxygenase, XylM) X光吸收近邊緣結構(XANES)與延伸X光吸收近邊緣細細微結構(EXAFS)分析法.............37
2.4.11.1、樣品製備.......................................................................37
2.4.11.2、XANES與EXAFS數據處理.............................................37
2.4.12、二甲苯單加氧酶複合體蛋白(xylene monooxygenase complex)
質體基因表現與活性分析..............................................................37
2.4.13、二甲苯單加氧酶(Xylene monooxygenase, XylM)
活性分析.....................................................................................38
第三章 結果與討論.......................................................................40
3.1、二甲苯單加氧酶其電子傳遞蛋白(Xylene monooxygenase electron transfer component, XylA) 蛋白質誘導表現分析........................................40
3.2、二甲苯單加氧酶其電子傳遞蛋白(Xylene monooxygenase electron transfer component, XylA)蛋白質純化.........................................40
3.3、二甲苯單加氧酶其電子傳遞蛋白(Xylene monooxygenase electron transfer component, XylA) 胜肽質量指紋鑑定(Peptide mass Fingerprinting)...........................................................................42
3.4、二甲苯單加氧酶其電子傳遞蛋白(Xylene monooxygenase electron transfer component, XylA) 含鐵離子定量(ICP_OES)..................................43
3.5、二甲苯單加氧酶其電子傳遞蛋白(Xylene monooxygenase electron transfer component, XylA) X光吸收近邊緣結(XANES)..................45
3.6、二甲苯單加氧酶(Xylene monooxygenase, XylM)蛋白質誘導表現分析...............................................................................................45
3.7、二甲苯單加氧酶(Xylene monooxygenase, XylM)
蛋白質純化..................................................................................46
3.8、二甲苯單加氧酶(Xylene monooxygenase, XylM)
定量............................................................................................48
3.9、二甲苯單加氧酶(Xylene monooxygenase, XylM)
含鐵離子定量(ICP_OES)...............................................................49
3.10、二甲苯單加氧酶(Xylene monooxygenase, XylM)
X光吸收近邊緣結構(XANES)
與延伸X光吸收近邊緣細細微結構(EXAFS)分析法...............................................................................................51
3.11、二甲苯單甲氧酵素的活性催化..............................................53
3.11.1、二甲苯單加氧酶複合體蛋白(xylene monooxygenase complex)
之二甲苯單加氧酶(Xylene monooxygenase, XylM)定量................53
3.11.2、二甲苯單加氧酶複合體蛋白(xylene monooxygenase complex)
活性分析.....................................................................................55
3.11.3、二甲苯單加氧酶(Xylene monooxygenase, XylM)有無二甲苯單加氧還原酶 (xylene monooxygenase electron transfer component, XylA)
比較...........................................................................................58
3.11.4、二甲苯單加氧酶(Xylene monooxygenase, XylM)
活性分析....................................................................................62
3.11.4.1、純化XylM活性..............................................................62
3.11.4.2、二甲苯單加氧酶(Xylene monooxygenase, XylM)
萃膜活性....................................................................................63
3.11.5二甲苯單加氧酶(Xylene monooxygenase, XylM)
與AlkB比較................................................................................65
3.12、討論.................................................................................66
3.12.1、二甲苯單加氧酶其電子傳遞蛋白(Xylene monooxygenase electron transfer component, XylA) .......................................................66
3.12.2、二甲苯單加氧酶(Xylene monooxygenase, XylM) ............67
3.12.3、二甲苯單加氧酶(Xylene monooxygenase, XylM)
電化學活性催化..........................................................................70
第四章 結論................................................................................71
參考文獻....................................................................................72
附錄一、pACYC-Duet-strep-XylM序列..............................................................................................81
附錄二、pET21b-XylA-His序列.............................................................................................84
(1) Joan L. Pellegrino. The BTX Chain: Benzene, Toluene, Xylene. Energy and Environmental Profile of the U.S. Chemical Industry 2000, 4, 105-141.
(2) Waldron, K. J.; Rutherford, J. C.; Ford, D.; Robinson, N. J. Metalloproteins and metal sensing. Nature 2009, 460, 823-830.
(3) Shanklin, J.; Whittle, E.; Fox, B. G. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry-Us 1994, 33, 12787-12794.
(4) Broadwater, J. A.; Haas, J. A.; Fox, B. G. The fundamental, versatile role of diiron enzymes in lipid metabolism. Fett-Lipid 1998, 100, 103-113.
(5) Lange, S. J.; Que, L. Oxygen activating nonheme iron enzymes. Curr Opin Chem Biol 1998, 2, 159-172.
(6) Martin, C. E.; Oh, C. S.; Jiang, Y. D. Regulation of long chain unsaturated fatty acid synthesis in yeast. Bba-Mol Cell Biol L 2007, 1771, 271-285.
(7) Shanklin, J.; Guy, J. E.; Mishra, G.; Lindqvist, Y. Desaturases: Emerging Models for Understanding Functional Diversification of Diiron-containing Enzymes. J Biol Chem 2009, 284, 18559-18563.
(8) Vandeloo, F. J.; Broun, P.; Turner, S.; Somerville, C. An Oleate 12-hydroxylase from Ricinus-Communis L Is a Fatty Acyl Desaturase Homolog. P Natl Acad Sci USA 1995, 92, 6743-6747.
(9) Dinamarca, M. A.; Aranda-Olmedo, I.; Puyet, A.; Rojo, F. Expression of the Pseudomonas putida OCT plasmid alkane degradation pathway is modulated by two different global control signals: Evidence from continuous cultures. J Bacteriol 2003, 185, 4772-4778.
(10) Franklin, F. C. H.; Bagdasarian, M.; Bagdasarian, M. M.; Timmis, K. N. Molecular and Functional-Analysis of the Tol Plasmid Pwwo from Pseudomonas-Putida and Cloning of Genes for the Entire Regulated Aromatic Ring Meta-Cleavage Pathway. P Natl Acad Sci-Biol 1981, 78, 7458-7462.
(11) Suzuki, M.; Hayakawa, T.; Shaw, J. P.; Rekik, M.; Harayama, S. Primary Structure of Xylene Monooxygenase - Similarities to and Differences from the Alkane Hydroxylation System. J Bacteriol 1991, 173, 1690-1695.
(12) Harayama, S.; Kok, M.; Neidle, E. L. Functional and Evolutionary Relationships among Diverse Oxygenases. Annu Rev Microbiol 1992, 46, 565-601.
(13) Bard, M.; Bruner, D. A.; Pierson, C. A.; Lees, N. D.; Biermann, B.; Frye, L.; Koegel, C.; Barbuch, R. Cloning and characterization of ERG25, the Saccharomyces cerevisiae gene encoding C-4 sterol methyl oxidase. P Natl Acad Sci USA 1996, 93, 186-190.
(14) Oger, E.; Ghignone, S.; Campagnac, E.; Fontaine, J.; Grandmougin-Ferjani, A.; Lanfranco, L. Functional characterization of a C-4 sterol methyl oxidase from the endomycorrhizal fungus Glomus intraradices. Fungal Genet Biol 2009, 46, 486-495.
(15) Aarts, M. G. M.; Keijzer, C. J.; Stiekema, W. J.; Pereira, A. Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 1995, 7, 2115-2127.
(16) Shaw, J. P.; Harayama, S. Purification and Characterization of the Nadh - Acceptor Reductase Component of Xylene Monooxygenase Encoded by the Tol Plasmid Pww0 of Pseudomonas-Putida Mt-2. Eur J Biochem 1992, 209, 51-61.
(17) Tshuva, E. Y.; Lee, D.; Bu, W. M.; Lippard, S. J. Catalytic oxidation by a carboxylate-bridged non-heme diiron complex. J Am Chem Soc 2002, 124, 2416-2417.
(18) Behan, R. K.; Lippard, S. J. The Aging-Associated Enzyme CLK-1 Is a Member of the Carboxylate-Bridged Diiron Family of Proteins. Biochemistry-Us 2010, 49, 9679-9681.
(19) Schenkman, J. B.; Jansson, I. The many roles of cytochrome b(5). Pharmacol Therapeut 2003, 97, 139-152.
(20) Bau, R.; Rees, D. C.; Kurtz, D. M.; Scott, R. A.; Huang, H. S.; Adams, M. W. W.; Eidsness, M. K. Crystal structure of rubredoxin from Pyrococcus furiosus at 0.95 angstrom resolution, and the structures of N-terminal methionine and formylmethionine variants of Pf Rd. Contributions of N-terminal interactions to thermostability. J Biol Inorg Chem 1998, 3, 484-493.
(21) Kurisu, G.; Kusunoki, M.; Katoh, E.; Yamazaki, T.; Teshima, K.; Onda, Y.; Kimata-Ariga, Y.; Hase, T. Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase. Nat Struct Biol 2001, 8, 117-121.
(22) Armengaud, J.; Sainz, G.; Jouanneau, Y.; Sieker, L. C. Crystallization and preliminary X-ray diffraction analysis of a [2Fe-2S] ferredoxin (FdVI) from Rhodobacter capsulatus. Acta Crystallogr D 2001, 57, 301-303.
(23) Nielsen, M. S.; Harris, P.; Ooi, B. L.; Christensen, H. E. M. The 1.5 angstrom resolution crystal structure of [Fe3S4]-ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus. Biochemistry-Us 2004, 43, 5188-5194.
(24) Fukuyama, K.; Matsubara, H.; Tsukihara, T.; Katsube, Y. Structure of [4fe-4s] Ferredoxin from Bacillus-Thermoproteolyticus Refined at 2.3-a Resolution - Structural Comparisons of Bacterial Ferredoxins. J Mol Biol 1989, 210, 383-398.
(25) Prenafeta-Boldu, F. X.; Kuhn, A.; Luykx, D. M. A. M.; Anke, H.; van Groenestijn, J. W.; de Bont, J. A. M. Isolation and characterisation of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol Res 2001, 105, 477-484.
(26) Van Beilen, J. B.; Li, Z.; Duetz, W. A.; Smits, T. H. M.; Witholt, B. Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci Technol 2003, 58, 427-440.
(27) Wentzel, A.; Ellingsen, T. E.; Kotlar, H. K.; Zotchev, S. B.; Throne-Holst, M. Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biot 2007, 76, 1209-1221.
(28) Norbert, G. S.-C. Chemical contamination of the environment: sources, types, and fate of synthrtic organic chemicals 1995. G. Y. a. C. E. Cerniglia, Wiley-Liss, D. C.: 27- 74.
(29) Yen, K. M.; Gunsalus, I. C. Regulation of Naphthalene Catabolic Genes of Plasmid Nah7. J Bacteriol 1985, 162, 1008-1013.
(30) Suen, W. C.; Gibson, D. T. Isolation and Preliminary Characterization of the Subunits of the Terminal Component of Naphthalene Dioxygenase from Pseudomonas-Putida Ncib 9816-4. J Bacteriol 1993, 175, 5877-5881.
(31) Buhler, B.; Schmid, A.; Hauer, B.; Witholt, B. Xylene monooxygenase catalyzes the multistep oxygenation of toluene and pseudocumene to corresponding alcohols, aldehydes, and acids in Escherichia coli JM101. J Biol Chem 2000, 275, 10085-10092.
(32) Harayama, S.; Rekik, M.; Wubbolts, M.; Rose, K.; Leppik, R. A.; Timmis, K. N. Characterization of 5 Genes in the Upper-Pathway Operon of Tol Plasmid Pww0 from Pseudomonas-Putida and Identification of the Gene-Products. J Bacteriol 1989, 171, 5048-5055.
(33) Batie C. J; Ballou D. P; Correll C. C. Phthalate dioxygenase reductase and related flavin– iron–sulfur containing electron transferases 1991. In: Müller F (ed) Chemistry and biochemistry of flavoenzymes. CRC, Boca Raton, FL, pp 544–556
(34) Nam, J. W.; Nojiri, H.; Yoshida, T.; Habe, H.; Yamane, H.; Omori, T. New classification system for oxygenase components involved in ring-hydroxylating oxygenations. Biosci Biotech Bioch 2001, 65, 254-263.
(35) Kweon O, Kim S. J; Baek S; Chae J. C; Adjei M. D; Baek D. H; Kim Y.C; Cerniglia C.E. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases 2008. BMC Biochemistry 9:11.
(36) Ashikawa, Y.; Fujimoto, Z.; Noguchi, H.; Habe, H.; Omori, T.; Yamane, H.; Nojiri, H. Electron transfer complex formation between oxygenase and ferredoxin components in Rieske nonheme iron oxygenase system. Structure 2006, 14, 1779-1789.
(37) Ferraro, D. J.; Gakhar, L.; Ramaswamy, S. Rieske business: Structure-function of Rieske non-heme oxygenases. Biochem Bioph Res Co 2005, 338, 175-190.
(38) Zylstra, G. J.; Wang, X. P.; Kim, E. B.; Didolkar, V. A. Cloning and Analysis of the Genes for Polycyclic Aromatic Hydrocarbon Degradation. Ann Ny Acad Sci 1994, 721, 386-398.
(39) Nolan, L. C.; O'Connor, K. E. Dioxygenase- and monooxygenase-catalysed synthesis of cis-dihydrodiols, catechols, epoxides and other oxygenated products. Biotechnol Lett 2008, 30, 1879-1891.
(40) Colby, J.; Dalton, H. Resolution of Methane Mono-Oxygenase of Methylococcus-Capsulatus-Bath into 3 Components - Purification and Properties of Component-C, a-Flavoprotein. Biochem J 1978, 171, 461-468.
(41) Austin, R. N.; Buzzi, K.; Kim, E.; Zylstra, G. J.; Groves, J. T. Xylene monooxygenase, a membrane-spanning non-heme diiron enzyme that hydroxylates hydrocarbons via a substrate radical intermediate. J Biol Inorg Chem 2003, 8, 733-740.
(42) Gerdemann, C.; Eicken, C.; Krebs, B. The crystal structure of catechol oxidase: New insight into the function of type-3 copper proteins. Accounts Chem Res 2002, 35, 183-191.
(43) Kovaleva, E. G.; Neibergall, M. B.; Chakrabarty, S.; Lipscomb, J. D. Finding intermediates in the O-2 activation pathways of non-heme iron oxygenases. Accounts Chem Res 2007, 40, 475-483.
(44) Sakurai, T.; Kataoka, K. Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem Rec 2007, 7, 220-229.
(45) Bugg, T. D. H.; Ramaswamy, S. Non-heme iron-dependent dioxygenases: unravelling catalytic mechanisms for complex enzymatic oxidations. Curr Opin Chem Biol 2008, 12, 134-140.
(46) Maji, S.; Lee, J. C. M.; Lu, Y. J.; Chen, C. L.; Hung, M. C.; Chen, P. P. Y.; Yu, S. S. F.; Chan, S. I. Dioxygen Activation of a Trinuclear CuICuICuI Cluster Capable of Mediating Facile Oxidation of Organic Substrates: Competition between O-Atom Transfer and Abortive Intercomplex Reduction. Chem-Eur J 2012, 18, 3955-3968.
(47) Bai, Y. H.; McCoy, J. G.; Levin, E. J.; Sobrado, P.; Rajashankar, K. R.; Fox, B. G.; Zhou, M. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature 2015, 524, 252-+.
(48) Man, W. C.; Miyazaki, M.; Chu, K.; Ntambi, J. M. Membrane topology of mouse stearoyl-CoA desaturase 1. J Biol Chem 2006, 281, 1251-1260.
(49) Wubbolts, M. G.; Reuvekamp, P.; Witholt, B. Tol Plasmid-Specified Xylene Oxygenase Is a Wide Substrate Range Monooxygenase Capable of Olefin Epoxidation. Enzyme Microb Tech 1994, 16, 608-615.
(50) Uslu, B.; Ozkan, S. A. Electroanalytical Methods for the Determination of Pharmaceuticals: A Review of Recent Trends and Developments. Anal Lett 2011, 44, 2644-2702.
(51) Mabbott, G. A. An Introduction to Cyclic Voltammetry. J Chem Educ 1983, 60, 697-702.
(52) Kendrew, J. C.; Bodo, G.; Dintzis, H. M.; Parrish, R. G.; Wyckoff, H.; Phillips, D. C. 3-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis. Nature 1958, 181, 662-666.
(53) Bradford, M. M. Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. Anal Biochem 1976, 72, 248-254.
(54) Jaganaman, S.; Pinto, A.; Tarasev, M.; Ballou, D. P. High levels of expression of the iron-sulfur proteins phthalate dioxygenase and phthalate dioxygenase reductase in Escherichia coli. Protein Expres Purif 2007, 52, 273-279.
(55) McClay, K.; Boss, C.; Keresztes, I.; Steffan, R. J. Mutations of toluene-4-monooxygenase that alter regiospecificity of indole oxidation and lead to production of novel indigoid pigments. Appl Environ Microb 2005, 71, 5476-5483.
(56) Rui, L. Y.; Reardon, K. F.; Wood, T. K. Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl Microbiol Biot 2005, 66, 422-429.
(57) Naing, S. H.; Parvez, S.; Pender-Cudlip, M.; Groves, J. T.; Austin, R. N. Substrate specificity and reaction mechanism of purified alkane hydroxylase from the hydrocarbonoclastic bacterium Alcanivorax borkumensis (AbAlkB). J Inorg Biochem 2013, 121, 46-52.
(58) Gutmann, D. A. P.; Mizohata, E.; Newstead, S.; Ferrandon, S.; Postis, V.; Xia, X. B.; Henderson, P. J. F.; Van Veen, H. W.; Byrne, B. A high-throughput method for membrane protein solubility screening: The ultracentrifugation dispersity sedimentation assay (vol 16, pg 1422, 2007). Protein Sci 2007, 16, 2775-2775.
(59) Abril, M. A.; Michan, C.; Timmis, K. N.; Ramos, J. L. Regulator and Enzyme Specificities of the Tol Plasmid-Encoded Upper Pathway for Degradation of Aromatic-Hydrocarbons and Expansion of the Substrate Range of the Pathway. J Bacteriol 1989, 171, 6782-6790.
(60) Alonso, H.; Kleifeld, O.; Yeheskel, A.; Ong, P. C.; Liu, Y. C.; Stok, J. E.; De Voss, J. J.; Roujeinikova, A. Structural and mechanistic insight into alkane hydroxylation by Pseudomonas putida AlkB. Biochem J 2014, 460, 283-293.
(61) Alonso, H.; Roujeinikova, A. Characterization and Two-Dimensional Crystallization of Membrane Component AlkB of the Medium-Chain Alkane Hydroxylase System from Pseudomonas putida GPo1. Appl Environ Microb 2012, 78, 7946-7953.
(62) Bahar, M.; de Majnik, J.; Wexler, M.; Fry, J.; Poole, P. S.; Murphy, P. J. A model for the catabolism of rhizopine in Rhizobium leguminosarum involves a ferredoxin oxygenase complex and the inositol degradative pathway. Mol Plant Microbe In 1998, 11, 1057-1068.
(63) Bernaudat, F.; Frelet-Barrand, A.; Pochon, N.; Dementin, S.; Hivin, P.; Boutigny, S.; Rioux, J. B.; Salvi, D.; Seigneurin-Berny, D.; Richaud, P.; Joyard, J.; Pignol, D.; Sabaty, M.; Desnos, T.; Pebay-Peyroula, E.; Darrouzet, E.; Vernet, T.; Rolland, N. Heterologous expression of membrane proteins: choosing the appropriate host. PLoS One 2011, 6, 29191.
(64) Bramucci, M.; Singh, M.; Nagarajan, V. Biotransformation of p-xylene and 2,6-dimethylnaphthalene by xylene monooxygenase cloned from a Sphingomonas isolate. Appl Microbiol Biot 2002, 59, 679-684.
(65) Buhler, B.; Bollhalder, I.; Hauer, B.; Witholt, B.; Schmid, A. Chemical biotechnology for the specific oxyfunctionalization of hydrocarbons on a technical scale. Biotechnol Bioeng 2003, 82, 833-842.
(66) Buhler, B.; Witholt, B.; Hauer, B.; Schmid, A. Characterization and application of xylene monooxygenase for multistep biocatalysis. Appl Environ Microb 2002, 68, 560-568.
(67) Cooper, H. L. R.; Mishra, G.; Huang, X. Y.; Pender-Cudlip, M.; Austin, R. N.; Shanklin, J.; Groves, J. T. Parallel and Competitive Pathways for Substrate Desaturation, Hydroxylation, and Radical Rearrangement by the Non-heme Diiron Hydroxylase AlkB. J Am Chem Soc 2012, 134, 20365-20375.
(68) Ding, H. G.; Demple, B. Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. P Natl Acad Sci USA 2000, 97, 5146-5150.
(69) Duetz, W. A.; van Beilen, J. B.; Witholt, B. Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotech 2001, 12, 419-425.
(70) Farghaly, O. A.; Hameed, R. S. A.; Abu-Nawwas, A. A. H. Analytical Application Using Modern Electrochemical Techniques. Int J Electrochem Sc 2014, 9, 3287-3318.
(71) Groves, J. T. High-valent iron in chemical and biological oxidations. J Inorg Biochem 2006, 100, 434-447.
(72) Harayama, S.; Inoue, J.; Shaw, J. P.; Rekik, M. Characterization of Xylene Monooxygenase, Benzyl Alcohol-Dehydrogenase and Benzaldehyde Dehydrogenase Encoded by Tol Plasmid of Pseudomonas-Putida. J Cell Biochem 1995, 39-39.
(73) Harayama, S.; Mermod, N.; Rekik, M.; Lehrbach, P. R.; Timmis, K. N. Roles of the Divergent Branches of the Meta-Cleavage Pathway in the Degradation of Benzoate and Substituted Benzoates. J Bacteriol 1987, 169, 558-564.
(74) Heath, S. L.; Charnock, J. M.; Garner, C. D.; Powell, A. K. Extended X-ray absorption fine structure (EXAFS) studies of hydroxo(oxo)iron aggregates and minerals, and a critique of their use as models for ferritin. Chem-Eur J 1996, 2, 634-639.
(75) Kelley, L. A.; Sternberg, M. J. E. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 2009, 4, 363-371.
(76) Kiener, A. Enzymatic Oxidation of Methyl-Groups on Aromatic Heterocycles - a Versatile Method for the Preparation of Heteroaromatic Carboxylic-Acids. Angew Chem Int Edit 1992, 31, 774-775.
(77) Lewis, J. C.; Coelho, P. S.; Arnold, F. H. Enzymatic functionalization of carbon-hydrogen bonds. Chem Soc Rev 2011, 40, 2003-2021.
(78) Liang, A. D.; Wrobel, A. T.; Lippard, S. J. A Flexible Glutamine Regulates the Catalytic Activity of Toluene o-Xylene Monooxygenase. Biochemistry-Us 2014, 53, 3585-3592.
(79) Lo, F. C.; Lee, J. F.; Liaw, W. F.; Hsu, I. J.; Tsai, Y. F.; Chan, S. I.; Yu, S. S. F. The Metal Core Structures in the Recombinant Escherichia coli Transcriptional Factor SoxR. Chem-Eur J 2012, 18, 2565-2577.
(80) Maruyama, T.; Iida, H.; Kakidani, H. Oxidation of both termini of p- and m-xylene by Escherichia coli transformed with xylene monooxygenase gene. J Mol Catal B-Enzym 2003, 21, 211-219.
(81) Meyer, D.; Witholt, B.; Schmid, A. Suitability of recombinant Escherichia coli and Pseudomonas putida strains for selective biotransformation of m-nitrotoluene by xylene monooxygenase. Appl Environ Microb 2005, 71, 6624-6632.
(82) Murray, L. J.; Garcia-Serres, R.; McCormick, M. S.; Davydov, R.; Naik, S. G.; Kim, S. H.; Hoffman, B. M.; Huynh, B. H.; Lippard, S. J. Dioxygen activation at non-heme diiron centers: Oxidation of a proximal residue in the I100W variant of toluene/o-xylene monooxygenase hydroxylase. Biochemistry-Us 2007, 46, 14795-14809.
(83) Notomista, E.; Cafaro, V.; Bozza, G.; Di Donato, A. Molecular Determinants of the Regioselectivity of Toluene/o-Xylene Monooxygenase from Pseudomonas sp Strain OX1. Appl Environ Microb 2009, 75, 823-836.
(84) Otenio, M. H.; da Silva, M. T. L.; Marques, M. L. O.; Roseiro, J. C.; Bidoia, E. D. Benzene, toluene and xylene biodegradation by Pseudomonas putida CCMI 852. Braz J Microbiol 2005, 36, 258-261.
(85) Py, B.; Barras, F. Building Fe-S proteins: bacterial strategies. Nat Rev Microbiol 2010, 8, 436-446.
(86) Riggs-Gelasco, P. J.; Price, J. C.; Guyer, R. B.; Brehm, J. H.; Barr, E. W.; Bollinger, J. M.; Krebs, C. EXAFS spectroscopic evidence for an Fe = O unit in the Fe(IV) intermediate observed during oxygen activation by taurine :alpha-ketoglutarate dioxygenase. J Am Chem Soc 2004, 126, 8108-8109.
(87) Sayanova, O.; Beaudoin, F.; Libisch, B.; Castel, A.; Shewry, P. R.; Napier, J. A. Mutagenesis and heterologous expression in yeast of a plant Delta(6)-fatty acid desaturase. J Exp Bot 2001, 52, 1581-1585.
(88) Scarrow, R. C.; Maroney, M. J.; Palmer, S. M.; Que, L.; Roe, A. L.; Salowe, S. P.; Stubbe, J. Exafs Studies of Binuclear Iron Proteins - Hemerythrin and Ribonucleotide Reductase. J Am Chem Soc 1987, 109, 7857-7864.
(89) Schmidt, T. G. M.; Skerra, A. The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2007, 2, 1528-1535.
(90) Shu, L. J.; Broadwater, J. A.; Achim, C.; Fox, B. G.; Munck, E.; Que, L. EXAFS and Mossbauer characterization of the Diiron(III) site in stearoyl-acyl carrier protein Delta(9-) desaturase. Journal of Biological Inorganic Chemistry 1998, 3, 392-400.
(91) Sonmez, B.; Yanik-Yildirim, K. C.; Wood, T. K.; Vardar-Schara, G. The Role of Substrate Binding Pocket Residues Phenylalanine 176 and Phenylalanine 196 on Pseudomonas sp OX1 Toluene o-Xylene Monooxygenase Activity and Regiospecificity. Biotechnol Bioeng 2014, 111, 1506-1512.
(92) Thiede, B.; Hohenwarter, W.; Krah, A.; Mattow, J.; Schmid, M.; Schmidt, F.; Jungblut, P. R. Peptide mass fingerprinting. Methods 2005, 35, 237-247.
(93) Tinberg, C. E.; Tonzetich, Z. J.; Wang, H. X.; Do, L. H.; Yoda, Y.; Cramer, S. P.; Lippard, S. J. Characterization of Iron Dinitrosyl Species Formed in the Reaction of Nitric Oxide with a Biological Rieske Center. J Am Chem Soc 2010, 132, 18168-18176.
(94) Wagner, S.; Klepsch, M. M.; Schlegel, S.; Appel, A.; Draheim, R.; Tarry, M.; Hogbom, M.; van Wijk, K. J.; Slotboom, D. J.; Persson, J. O.; de Gier, J. W. Tuning Escherichia coli for membrane protein overexpression. P Natl Acad Sci USA 2008, 105, 14371-14376.
(95) Worsey, M. J.; Williams, P. A. Metabolism of Toluene and Xylenes by Pseudomonas (Putida (Arvilla) Mt-2 - Evidence for a New Function of Tol Plasmid. J Bacteriol 1975, 124, 7-13.
(96) Xiao, G. B.; Pan, C. B.; Cai, Y. Z.; Lin, H.; Fu, Z. M. Effect of benzene, toluene, xylene on the semen quality and the function of accessory gonad of exposed workers. Ind Health 2001, 39, 206-210.
(97) 林姿綺. 網版印刷電極應用在藥物分析上之研究. 國立中興大學, 2001.
(98) 邱梅欣. 多元性可拋棄式網版印刷電極分析技術平台之建立與應用. 國立中興大學, 2009.
(99) 鍾協訓. 網版印刷電極在分析化學上的應用與發展. 國立中興大學, 2002.

電子全文 電子全文(網際網路公開日期:20210731)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top