(3.226.72.118) 您好!臺灣時間:2021/05/13 08:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱嘉偉
研究生(外文):Ka-WaiChu
論文名稱:衛星遙測應用於台南海岸與懸浮物變動之研究
論文名稱(外文):Application of remote sensing on coastal change and sediment distribution in Tainan
指導教授:羅偉誠羅偉誠引用關係張懿
指導教授(外文):Wei-Cheng LoYi Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:48
中文關鍵詞:台南海岸管理法影像處理DSASGIS
外文關鍵詞:CZMADSASGISImage processingTainan
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二零一五年二月,立法院終於通過了延宕二十餘年的海岸管理法。其中第14條指出海岸災害如:海岸侵蝕,洪氾溢淹,暴潮溢淹,地層下陷或其他潛在的災難,中央或地方政府應視不同情況制定相關的管理計劃。又因第44條,中央及地方政府需於二年內公告海岸管理計畫,因此彰顯了此法對海岸環境保護之重要性及急迫性。本研究區域位於台南沿海,透過地理資訊系統(GIS)和數位海岸線分析系統(DSAS)(Thieler et al., 2009)觀察海岸線的長期變化,說明台南沿海岸地區侵蝕及淤積的情況。 本研究使用了航照圖、地形圖以及衛星影像圖等影像資料,監測從1974年到2013年,共37年的海岸線。再用統計的線性回歸率(LRR)方法來量化台南海岸線的變化。結果顯示台南北部及中部海岸幾乎全面處於侵蝕的狀態,其中中部的七股潟湖沙洲侵蝕最為嚴重;相反,南部的新浮崙沙洲鄰近地區的結果顯示為淤積。

為更深入瞭解海岸侵淤的可能原因,本研究利用影像處理技術分析我國福衛2號影像中懸浮物的瞬時梯度變化及方向。而懸浮物的梯度方向即表示其流動方向,結果顯示在台南北部沿岸至中部的七股潟湖沙洲,無論是漲潮或退潮,懸浮物質皆呈現向西或西北方向傳輸至臺灣海峽,故本研究推測此一因素可能為導致沿岸沙洲無法維持之主因之一。另一方面,位於曾文溪出海口北側新浮崙沙洲的淤積,應是漲潮時曾文溪懸浮物入海後向北即向東流,於七股海堤南側逐漸堆積所造成。因此,本研究推測,台南北方的沙源減少應是導致沿岸沙洲侵蝕的主因。

The Coastal Zone Management Act (CZMA) of Taiwan was adopted in early 2015. This act is aimed at promoting the integrated management and sustainable development of coastal areas. In terms of the details this act, article 14 indicates that a coastal protection plan shall be formulated for coastal zone erosion, tide overflow, storm surge flooding, land subsidence, or other potential disasters, implemented by the central or local government. Additionally, article 44 indicates that central and local governments need to announce their coastal management plans within two years, which underscores the importance and urgency of coastal management planning in Taiwan. This research focus on a case study conducted in Tainan, located in the south-western part of Taiwan. Shoreline change was analyzed using geographic information system (GIS) and Digital Shoreline Analysis System (DSAS) models. Resources including aerial photography, topographic maps and satellite imagery have also been used to monitor shorelines change from 1974 to 2013. Erosion and accretion conditions were recorded to identify shorelines using a statistical method called the linear regression rate (LRR). The results of the LRR suggested the Tainan coast was largely in an erosion phase. The most serious situation occurred in the sandbars of Cigu Lagoon, located in the middle of the Tainan coast. In contrast, the results suggested coastal accretion occurred along the Shinfulun sandbar and in the Sicao Wetland during the study period. An image processing method was developed to identify the suspended sediment distribution (SSD) at an instantaneous time. It was verified by comparing results with survey data from the study area. The SSD helps explain the reasons for coastal change in Tainan.

Daily satellite image derived from FORMOSA-2 were analyzed to illustrate the gradient magnitudes and directions of suspended sediment (SS). The results demonstrated that in alternative flood or ebb, the gradient directions revealed a generally westward/northwestward transport, which suggested that the offshore-ward transport of SS is likely one of the major factors in coastal erosion. In addition, these results revealed that sediment discharged from the Tsengwen River moved northward and eastward and accumulated south of the Cigu seawall. This movement therefore caused Shinfulun sandbar accretion in the north estuary of the Tsengwen River. In conclusion, the decrease in the southward supplementation of SS from northern Tainan City is likely be the crucial factor resulting in erosion along the Cigu lagoon.

Abstract I
摘要 III
誌謝 IV
Contents V
List of Tables VI
List of Figures VII
1. Introduction 1
1.1 Coastal Management in Taiwan 1
1.2 Motivation and Purpose 4
1.3 Study Area 5
2. Literature Review 7
2.1 Shoreline Definition and Indicators 7
2.2 Applications of DSAS in Coastal Management 11
2.3 Gradient Magnitude of Suspended Sediment Distribution 11
3. Materials and Methods 12
3.1 Applications of Historical Features and Images 12
3.2 Shorelines Digitalizing Using Satellite Imagery 14
3.3 Methodology of Image Processing on Satellite Imagery 19
4. Results and Discussion 23
4.1 Tainan Shoreline Change Analysis 23
4.2 Gradient Vector of Sediment 29
4.3 Verification and Probable Behaviors of Sediment Transport 41
5. Conclusions and Recommendations 44
Reference 46


Aarninkhof, S. G. J. (2003). Nearshore bathymetry derived from video imagery: TU Delft, Delft University of Technology.
Anders, F. J., & Byrnes, M. R. (1991). Accuracy of shoreline change rates as determined from maps and aerial photographs. Shore and Beach, 59(1), 17-26.
Belkin, I. M., & O'Reilly, J. E. (2009). An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. Journal of Marine Systems, 78(3), 319-326.
Bellomo, D., Pajak, M. J., & Sparks, J. (1999). Coastal flood hazards and the national flood insurance program. Journal of Coastal Research, 21-26.
Boak, E. H., & Turner, I. L. (2005). Shoreline Definition and Detection: A Review. Journal of Coastal Research, 214, 688-703. doi: 10.2112/03-0071.1
Dolan, R., Fenster, M. S., & Holme, S. J. (1991). Temporal analysis of shoreline recession and accretion. Journal of Coastal Research, 723-744.
Dolan, R., Hayden, B. P., May, P., & May, S. (1980). The reliability of shoreline change measurements from aerial photographs. Shore and Beach, 48(4), 22-29.
Douglas, B., Kearney, M. T., & Leatherman, S. P. (2000). Sea level rise: History and consequences (Vol. 75): Academic Press.
Douglas, B. C., & Crowell, M. (2000). Long-term shoreline position prediction and error propagation. Journal of Coastal Research, 145-152.
Galgano, F., & Leatherman, S. (1991). Shoreline change analysis: a case study. Paper presented at the Coastal sediments.
Gallagher, A. (2010). The coastal sustainability standard: A management systems approach to ICZM. Ocean & Coastal Management, 53(7), 336-349.
Genz, A. S., Fletcher, C. H., Dunn, R. A., Frazer, L. N., & Rooney, J. J. (2007). The predictive accuracy of shoreline change rate methods and alongshore beach variation on Maui, Hawaii. Journal of Coastal Research, 87-105.
Ghosh, M. K., Kumar, L., & Roy, C. (2015). Monitoring the coastline change of Hatiya island in Bangladesh using remote sensing techniques. ISPRS Journal of Photogrammetry and Remote Sensing, 101, 137-144.
Hackney, C., Darby, S. E., & Leyland, J. (2013). Modelling the response of soft cliffs to climate change: A statistical, process-response model using accumulated excess energy. Geomorphology, 187, 108-121.
Han, M., Hou, J., & Wu, L. (1995). Potential impacts of sea-level rise on China's coastal environment and cities: A national assessment. Journal of Coastal Research, 79-95.
Hanson, H., Gravens, M. B., & Kraus, N. C. (1988). Prototype applications of a generalized shoreline change numerical model. Paper presented at the Coastal Engineering.
Hapke, C. J., Himmelstoss, E. A., Kratzmann, M. G., List, J. H., & Thieler, E. R. (2011). National assessment of shoreline change; historical shoreline change along the New England and Mid-Atlantic coasts: US Geological Survey.
Hapke, C. J., Kratzmann, M. G., & Himmelstoss, E. A. (2013). Geomorphic and human influence on large-scale coastal change. Geomorphology, 199, 160-170.
Hoeke, R. K., Zarillo, G. A., & Synder, M. (2001). A GIS-Based Tool for Extracting Shoreline Postions from Aerial Imagery (BeachTools): DTIC Document.
Jabaloy-Sánchez, A., Lobo, F. J., Azor, A., Martín-Rosales, W., Pérez-Peña, J. V., Bárcenas, P., Macías, J., Fernández-Salas, L. M., & Vázquez-Vílchez, M. (2014). Six thousand years of coastline evolution in the Guadalfeo deltaic system (southern Iberian Peninsula). Geomorphology, 206, 374-391.
Kang, G. (1977). Digital image processing. Quest, vol. 1, Autumn 1977, p. 2-20., 1, 2-20.
Leatherman, S., & Clow, B. (1983). UMD shoreline mapping project. IEEE Geoscience and Remote Sensing Society Newsletter, 22(3), 5-8.
Li, X., Zhou, Y., Zhang, L., & Kuang, R. (2014). Shoreline change of Chongming Dongtan and response to river sediment load: A remote sensing assessment. Journal of Hydrology, 511, 432-442. doi: 10.1016/j.jhydrol.2014.02.013
McCurdy, P. (1950). Coastal delineation from aerial photographs. Photogrammetric Engineering, 16(4), 550-555.
Moore, L. J., Benumof, B. T., & Griggs, G. B. (1999). Coastal erosion hazards in Santa Cruz and San Diego Counties, California. Journal of Coastal Research, 121-139.
Morton, R. A. (1991). Accurate shoreline mapping: past, present, and future. Paper presented at the Coastal Sediments.
Oyedotun, T. D. (2014). Shoreline Geometry: DSAS as a Tool for Historical Trend Analysis. British Society for Geomorphology, Geomorphological Techniques.
Plant, N. G., & Holman, R. A. (1997). Intertidal beach profile estimation using video images. Marine Geology, 140(1), 1-24.
Priest, G. R. (1999). Coastal shoreline change study northern and central Lincoln county, Oregon. Journal of Coastal Research, 140-157.
Shalowitz, A. L. (1964). Shore and sea boundaries: with special reference to the interpretation and use of coast and geodetic survey data (Vol. 2): US Department of Commerce.
Shimada, T., Sakaida, F., Kawamura, H., & Okumura, T. (2005). Application of an edge detection method to satellite images for distinguishing sea surface temperature fronts near the Japanese coast. Remote sensing of environment, 98(1), 21-34.
Smith, G. L., & Zarillo, G. A. (1990). Calculating long-term shoreline recession rates using aerial photographic and beach profiling techniques. Journal of Coastal Research, 111-120.
Stafford, D., & Langfelder, J. (1971). Air photo survey of coastal erosion. Photogrammetric Engineering.
Stockdonf, H. F., Sallenger Jr, A. H., List, J. H., & Holman, R. A. (2002). Estimation of shoreline position and change using airborne topographic lidar data. Journal of Coastal Research, 502-513.
Tandeo, P., Ba, S., Fablet, R., Chapron, B., & Autret, E. (2013). Spatio-temporal segmentation and estimation of ocean surface currents from satellite sea surface temperature fields. Paper presented at the Image Processing (ICIP), 2013 20th IEEE International Conference on.
Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., & Ergul, A. (2009). The Digital Shoreline Analysis System (DSAS) Version 4.0-An ArcGIS Extension for Calculating Shoreline Change: US Geological Survey.
Zhang, K., Huang, W., Douglas, B. C., & Leatherman, S. (2002). Shoreline position variability and long-term trend analysis. Shore and Beach, 70(2), 31-35.
王秀雯、王志添、陳錕山、林延郎 (2007)。利用衛星雷達影像分析臺灣西部水線變遷。 Journal of Photogrammetry and Remote Sensing, 12(2), 107-119。
吳盈志、劉景毅、黃煌煇 (2013)。七股潟湖沙洲地形變遷之研究。海洋工程學刊, 13(4), 367-391。
林宗儀、陳勉銘、陳華玟 (2007)。福衛二號影像於海岸侵蝕監測的應用。
林宗儀 (2009)。臺灣海岸變遷監測分析 (1/4)。
張瑞津、石再添、陳翰霖 (1996)。 台灣西南部台南海岸平原地形變遷之研究。 師大地理研究報告, 第26期。
陳翰霖、張瑞津 (2003)。 曾文水庫對流量及輸沙量的影響。 師大地理研究報告, 第39期。
簡仲和 (2004)。 台南海岸觀測調查分析 (3/3)。
簡仲和 (2010)。 七股潟湖保護對策研究 (2/2)。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔