跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱詩婷
研究生(外文):Szu-TingChiu
論文名稱:以實驗方法探究一維海底峽谷演化
論文名稱(外文):Experimental study of one dimensional submarine canyon evolution
指導教授:賴悅仁
指導教授(外文):Yueh-Jen Lai
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:93
中文關鍵詞:海底峽谷沙箱實驗異重流沙波數位影像處理無因次化分析
外文關鍵詞:submarine canyontank experimenthyperpycnal flowimaging processnormalized analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
異重流(或濁流)是陸緣沉積物被帶往海底峽谷及深海平原之重要傳輸媒介,同時也是影響海底峽谷形貌演化的重要因素。雖然海底峽谷是大陸棚上的重要特徵,但是關於海底峽谷之起源及發展至今仍了解有限。本研究透過一維的物理模型實驗以探究異重流下切海底峽谷的機制及其演化過程。實驗模擬海底峽谷之縱剖面,透過連續的異重流及持續增加的地勢差距兩項機制,讓我們有機會重現在持續發展的大陸坡上,受異重流下切之一維海底峽谷演化過程。實驗過程中,我們以間隔攝影記錄海底峽谷完整的演化過程,並透過數位影像處理技術獲得定量之地形資料。我們追蹤峽谷頭隨時間之變化過程,並從中觀察海底峽谷下切機制與掏刷坑之關係。實驗結果發現海底峽谷之剖面於每個演化階段的後期,都會達到一個穩定的底床坡度,且此穩定剖面經無因次化分析後,皆出現高度之自我相似性。我們也求得不同流量與掏刷坑波長之趨勢,並計算異重流沿著地形剖面之密度福祿數變化。期待本研究之初步成果能夠對海底峽谷之生成與演化做出進一步的了解,也期許此成果能引發更多研究投注在海底峽谷之形貌動力學領域。
Hyperpycnal flows (or turbidity currents) are important in oceanic transportation, they carry subaerial turbidites into deep sea area and are also essential to submarine canyon development. Although submarine canyons are ubiquitous, the mechanism of canyons evolution is still a matter of debate. In this study, one dimensional micro-scale tank experiment was conducted to investigate the mechanism by which turbidity currents erode and incise the canyon floors. During the process of the experiment, we use time-lapse photograph to record the overall process of canyons’ evolution, and analyze them by image analysis methods to obtain quantitative topographical data. The experiment results indicate that submarine canyons will reach stable slope eventually in each evolution period with the growing of continental slope. The result also shows highly self-similarity in these cross sections by dimensional analysis. Furthermore, by tracing the tine series of bedform profiles we observe the correlation between the scours' wavelength and flow rate. Base on this finding, we calculate the Densimetric Froude number of turbidity currents along the section and manifest them to be supercritical flow. Among such analysis above, we hope that this study can facilitate the understanding of submarine canyons and arise more attention toward morphological study.
誌謝 I
摘要 II
目錄 X
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1-1 研究背景 1
1-2 海底峽谷之起源與發展機制之研究 4
1-3 文獻回顧 7
1-3-1 濁流簡介及實驗應用 7
1-3-2 造就海底峽谷起源之必要因素 8
1-3-3 利用實驗論證海底的起源發展 11
1-4 論文架構 12
第二章 實驗配置 13
2-1實驗配置 13
2-1-1水槽製作 14
2-1-2侵蝕基準面下降系統 16
2-1-3砂材及異重流基本特性 17
2-2實驗流程與組數 19
2-3影像處理 23
2-3-1 尺寸坐標化 23
2-3-3 底床測量方式 23
2-4問題解決 26
第三章 結果與討論 28
3-1水下崩滑之理論與實驗 28
3-1-1 崩滑理論 28
3-1-2崩滑實驗結果 30
3-1-3 崩滑實驗中侵蝕基準面下降高度差異之探討 33
3-2 一維峽谷演化之觀察 35
3-2-1實驗之綜合概述 36
3-2-2 一維峽谷之定量測量 40
3-3 峽谷受異重流侵蝕機制之探討 44
3-3-1 峽谷頭位置之判斷方法 44
3-3-2 峽谷頭隨時間之演化 46
3-3-3異重流形成之掏刷坑探討 53
3-3-4 流量及階段對侵蝕影響之比較 55
3-4 無因次分析 62
3-4-1 水下崩滑之最終穩定底床 62
3-4-2 異重流下切峽谷之最終穩定底床 64
3-5 從實驗中尋找可能之歸納 67
3-5-1 掏刷坑“波長”與流量之趨勢計算 67
3-5-2 異重流流況探討 70
第四章 定量及定性之比較 79
4-1 不同實驗之比較 79
4-2 實驗與現地峽谷主深槽縱剖面之比較 81
4-3數值模擬與實驗之比較 85
第五章 結論及建議 89
參考文獻 91

1.Amblas, D., T. P. Gerber, B. Mol, R. Urgeles, D. Garcia-Castellanos, M. Canals, L. F. Pratson, N. Robb, and J. Canning (2012), Survival of a submarine canyon during long-term outbuilding of a continental margin, Geology, 40(6), 543-546.
2.Cantelli, A., C. Pirmez, S. Johnson, and G. Parker (2011), Morphodynamic and Stratigraphic Evolution of Self-channelized Subaqueous Fans Emplaced by Turbidity Currents , Journal of Sedimentary Research, 81(3-4), 233-247.
3.Gerber, T. P., D. Amblas, M. A. Wolinsky, L. F. Pratson, and M. Canals (2009), A model for the long‐profile shape of submarine canyons, Journal of Geophysical Research: Earth Surface (2003–2012), 114(F3).
4.Harris, P. T., and T. Whiteway (2011), Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins, Mar. Geol., 285(1-4), 69-86.
5.Hsu, S. K., J. Kuo, C. L. Lo, C. H. Tsai, W. B. Doo, C. Y. Ku, and J. C. Sibuet (2008), Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquake off SW Taiwan, Terrestrial Atmospheric and Oceanic Sciences, 19(6), 767-772.
6.Kostic, S. (2011), Modeling of submarine cyclic steps: Controls on their formation, migration, and architecture, Geosphere, 7(2), 294-304.
7.Kostic, S., and G. Parker (2006), The response of turbidity currents to a canyon-fan transition: internal hydraulic jumps and depositional signatures, Journal of Hydraulic Research, 44(5), 631-653.
8.Lai, S. Y. J., and H. Capart (2007), Two-diffusion description of hyperpycnal deltas, J. Geophys. Res.-Earth Surf., 112(F3), 20.
9.Lai, S. Y. J., and H. Capart (2009), Reservoir infill by hyperpycnal deltas over bedrock, Geophysical Research Letters, 36, 6.
10.Lai, S. Y. (2010), Morphodynamics of Coevolving Fluvial and Hyperpycnal Valleys., Department of Civil Engineering College of Engineering National Taiwan University Doctoral Dissertation, 1-331.
11.Lai, S. Y., T. P. Gerber, and D. Amblas (2016), An experimental approach to submarine canyon evolution, Geophysical Research Letters, 43(6), 2741-2747.
12.Lastras, G., J. Acosta, A. Munoz, and M. Canals (2011), Submarine canyon formation and evolution in the Argentine Continental Margin between 44 degrees 30 ' S and 48 degrees S, Geomorphology, 128(3-4), 116-136.
13.Malverti, L., E. Lajeunesse, and F. Metivier (2008), Small is beautiful: Upscaling from microscale laminar to natural turbulent rivers, Journal of Geophysical Research-Earth Surface, 113(F4), 14.
14.Meiburg, E., and B. Kneller (2010), Turbidity Currents and Their Deposits, in Annual Review of Fluid Mechanics, edited, pp. 135-156, Annual Reviews, Palo Alto.
15.Metivier, F., E. Lajeunesse, and M. C. Cacas (2005), Submarine canyons in the bathtub, Journal of Sedimentary Research, 75(1), 6-11.
16.Mulder, T., J. P. M. Syvitski, S. Migeon, J. C. Faugeres, and B. Savoye (2003), Marine hyperpycnal flows: initiation, behavior and related deposits. A review, Marine and Petroleum Geology, 20(6-8), 861-882.
17.Normark, W. R., and P. R. Carlson (2003), Giant submarine canyons: Is size any clue to their importance in the rock record?, Special Papers-Geological Society of America, 175-190.
18.Normark, W. R., C. K. Paull, D. W. Caress, W. Ussler, and R. Sliter (2009), Fine-scale relief related to Late Holocene channel shifting within the floor of the upper Redondo Fan, offshore Southern California, Sedimentology, 56(6), 1690-1704.
19.Paull, C. K., W. Ussler, H. G. Greene, R. Keaten, P. Mitts, and J. Barry (2003), Caught in the act: the 20 December 2001 gravity flow event in Monterey Canyon, Geo-Marine Letters, 22(4), 227-232.
20.Paull, C. K., W. Ussler, D. W. Caress, E. Lundsten, J. A. Covault, K. L. Maier, J. P. Xu, and S. Augenstein (2010), Origins of large crescent-shaped bedforms within the axial channel of Monterey Canyon, offshore California, Geosphere, 6(6), 755-774.
21.Petit, C., S. Migeon, and M. Coste (2015), Numerical models of continental and submarine erosion: application to the northern Ligurian Margin (Southern Alps, France/Italy), Earth Surface Processes and Landforms, 40(5), 681-695.
22.Pratson, L. F., and B. J. Coakley (1996), A model for the headward erosion of submarine canyons induced by downslope-eroding sediment flows, Geological Society of America Bulletin, 108(2), 225-234.
23.Pratson, L. F., W. B. Ryan, G. S. Mountain, and D. C. Twichell (1994), Submarine canyon initiation by downslope-eroding flows.
24.Sequeiros, O. E., B. Spinewine, R. T. Beaubouef, T. Sun, M. H. Garcia, and G. Parker (2010), Characteristics of Velocity and Excess Density Profiles of Saline Underflows and Turbidity Currents Flowing over a Mobile Bed, J. Hydraul. Eng.-ASCE, 136(7), 412-433.
25.Shepard, F. P. (1981), Submarine Canyons – Multiple Causes and Long-Time Persistence, Aapg Bulletin-American Association of Petroleum Geologists, 65(6), 1062-1077.
26.Shepard, F. P., and C. N. Beard (1938), Submarine canyons - distribution and long profiles.
27.Shepard, F. P., K. O. Emery, and E. C. La Fond (1941), Rip currents a process of geological importance, Journal of Geology, 49(4), 337-369.
28.Van Den Berg, J. H., A. Van Gelder, and D. R. Mastbergen (2002), The importance of breaching as a mechanism of subaqueous slope failure in fine sand, Sedimentology, 49(1), 81-95.
29.van Rhee, C., and A. Bezuijen (1998), The breaching of sand investigated in large-scale model tests, Coastal Engineering Proceedings, 1(26).
30.Weill, P., E. Lajeunesse, O. Devauchelle, F. Metiver, A. Limare, B. Chauveau, and D. Mouaze (2014), Experimental Investigation on Self-Channelized Erosive Gravity Current, Journal of Sedimentary Research, 84(6), 487-498.
31.Yu, B., A. Cantelli, J. Marr, C. Pirmez, C. O'Byrne, and G. Parker (2006), Experiments on self-channelized subaqueous fans emplaced by turbidity currents and dilute mudflows, Journal of Sedimentary Research, 76(5-6), 889-902.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊