跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/20 05:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梅琳恩
研究生(外文):Mairim Alexandra SolisTejada
論文名稱:透明質酸調控人類胎盤間葉幹細胞的粒線體功能之機制研究
論文名稱(外文):Mechanism of Hyaluronan on the Regulation of the Mitochondrial Function of Human Placenta-Derived Mesenchymal Stem Cells
指導教授:黃玲惠
指導教授(外文):Lynn L.H. Huang
學位類別:博士
校院名稱:國立成功大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:178
中文關鍵詞:透明質酸間葉幹細胞粒線體增生
外文關鍵詞:hyaluronanmesenchymal stem cellsmitochondriaproliferation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
透明質酸經由調控細胞週期以及細胞增生速率維持間葉幹細胞的增生與分化潛能。將人類胎盤間葉幹細胞培養於低濃度懸浮性透明質酸培養液(SHA),可促進細胞增生,而將細胞培養於塗覆高濃度透明質酸之培養介面(CHA)上,則細胞增生減緩,但並無已知的分子生物途徑解釋為何不同濃度的透明質酸介面會對所培養的細胞造成如此差異。粒線體已知在幹細胞自我更新以及分化中扮演重要角色,此研究中,我們探討透明質酸調控幹細胞的增生時,粒線體代謝的機制以及功能的改變。實驗結果證實,透明質酸會使粒線體數量增加以及粒線體功能增強,活性氧含量則是會減少。於SHA介面上所培養的間葉胎盤幹細胞,在乳酸合成以及ATP含量上有顯著的提昇,在粒線體的耗氧率則是下降。另一方面,將CHA介面的透明質酸濃度提高,會增強粒線體生合成相關基因PGC1-α和mTFA的表現量,導致粒線體生合成的增加,以及粒線體功能MMP,OCR,和ATP的加強。儘管透明質酸可增強粒線體功能,透明質酸所調控的細胞進入緩慢增生期,使粒線體ATP合成效率下降五倍。綜合這些實驗結果,透明質酸使細胞傾向於使用粒線體轉換能量,並藉此影響幹細胞增生時的代謝速率。經由此研究,我們得以明確的理解透明質酸對幹細胞代謝機制的影響,將有助於未來幹細胞應用的發展。
Hyaluronan preserves the proliferation and differentiation potential of mesenchymal stem cells by controlling cell cycle transit and proliferation rate. Human placenta-derived mesenchymal stem cells (PDMSCs) cultured on suspension hyaluronan (SHA) at low concentrations enhances proliferation rate, whereas cultured on coated hyaluronan (CHA) reduces cell proliferation. Nonetheless, the molecular mechanism of this event was not yet underscored. Mitochondria are known to play a crucial role in stem cell self-renewal and differentiation. Thus, in this study we aimed to investigate the metabolic mechanism underlying the hyaluronan-regulated proliferative maintenance of stem cells by evaluating mitochondrial functions. Results showed that hyaluronan increased mitochondrial biogenesis and function, and reduced reactive oxygen species levels. Fast proliferative PDMSCs on SHA, when compared to slow-proliferative PDMSCs on CHA, showed an increase in lactate production and ATP content with reduced mitochondrial oxygen consumption rate (OCR). However, increasing concentrations of hyaluronan in CHA upregulated the expression of mitochondrial biogenesis-related genes PGC1-α and mTFA; increased mitochondrial biogenesis; and favored mitochondrial function with an increase of MMP, OCR, and ATP. Although hyaluronan seemed to favor mitochondrial function, cell entry into a hyaluronan-regulated slow-proliferative mode led to a 5-fold reduction in ATP production and coupling efficiency levels. Together, these results suggest that hyaluronan influences the proliferative state of PDMSCs by favoring mitochondrial function. A clear understanding of the metabolic mechanism induced by hyaluronan in stem cells will allow future applications that may overcome the current limitations faced in stem cell culture.
Chinese Abstract (中文摘要).... I
Abstarct....II
Acknowledgements....VI
Table of Contents....VII
Contents of Tables....IX
Contents of Figures....X
Abbreviation List....XIII
Chapter 1 Research Background....1
1-1 Mesenchymal Stem Cells....1
1-2 Hyaluronan Properties.... 3
1-3 Role of Hyaluronan on Stem Cell Behavior ....4
1-4 Role of Hyaluornan on Mitochondrial Functions ....5
1-5 Role of Mitochondria on Stem Cell Behavior ....7
1-6 Research Motivation....9
Chapter 2 Materials and Methods....11
2-1 Cell Culture and Conditions....11
2-2 Experimental Assays....13
Chapter 3. Effect of Suspension Hyaluronan (SHA) and Coated Hyaluronan (CHA) on the Proliferation and Mitochondrial Function of PDMSCs....26
3-1 Introduction....26
3-2 Results....30
3-3 Discussion....35
3-4 Summary....42
Chapter 4. Mechanism of Hyaluronan-Coated Surfaces on the Regulation of the Mitochondrial Function in Slow-Proliferative PDMSCs....44
4-1 Introduction....44
4-2 Results....47
4-3 Discussion....61
4-4 Summary....73
Chapter 5 Conclusions....75
References....77
Tables....87
Figures....91
Related Paper Publications....148


Akimoto, T., Pohnert, S. C., Li, P., Zhang, M., Gumbs, C., Rosenberg, P. B., Williams, R. S., and Yan, Z. Exercise Stimulates Pgc-1α Transcription in Skeletal Muscle through Activation of the p38 MAPK Pathway. Journal of Biological Chemistry 280, 19587-19593, 2005.

Anesti, V., and Scorrano, L. The relationship between mitochondrial shape and function and the cytoskeleton. Biochimica et Biophysica Acta-Bioenergetics 1757, 692-699, 2006.

Asahara, T., Kalka, C., and Isner, J. M. Stem cell therapy and gene transfer for regeneration. Gene Therapy 7, 451-457, 2000.

Balogh, G. T., Illés, J., Székely, Z., Forrai, E., and Gere, A. Effect of different metal ions on the oxidative damage and antioxidant capacity of hyaluronic acid. Archives of Biochemistry and Biophysics 410, 76-82, 2003.

Beal, M. F. Mitochondrial dysfunction in neurodegenerative diseases. Biochimica et Biophysica Acta-Bioenergetics 1366, 211-223, 1998.

Birket, M. J., Orr, A. L., Gerencser, A. A., Madden, D. T., Vitelli, C., Swistowski, A., Brand, M. D., and Zeng, X. A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. Journal of Cell Science 124, 348-358, 2011.

Bourguignon, L. Y., Xia, W., and Wong, G. Hyaluronan-mediated CD44 interaction with p300 and SIRT1 regulates beta-catenin signaling and NFkappaB-specific transcription activity leading to MDR1 and Bcl-xL gene expression and chemoresistance in breast tumor cells. The Journal of Biological Chemistry 284, 2657-2671, 2009.

Brandon, M. C., Lott, M. T., Nguyen, K. C., Spolim, S., Navathe, S. B., Baldi, P., and Wallace, D. C. MITOMAP: a Human Mitochondrial Genome Database-2004 Update. Nucleic Acids Research 33, 611-613, 2005.

Brenner, C. A., Kubisch, H. M., and Pierce, K. E. Role of the mitochondrial genome in assisted reproductive technologies and embryonic stem cell-based therapeutic cloning. Reproduction, Fertility and Development 16, 743-751, 2004.

Carbognin, E., Betto, R. M., Soriano, M. E., Smith, A. G., and Martello, G. Stat3 promotes mitochondrial transcription and oxidative respiration during maintenance and induction of naive pluripotency. The European Molecular Biology Organization Journal 35, 618-634, 2016.

Chen, C. T., Shih, Y. R. V., Kuo, T. K., Lee, O. K., and Wei, Y. H. Coordinated Changes of Mitochondrial Biogenesis and Antioxidant Enzymes During Osteogenic Differentiation of Human Mesenchymal Stem Cells. Stem Cells 26, 960-968, 2008.

Chen, P. Y., Huang, L. L. H., and Hsieh, H. J. Hyaluronan preserves the proliferation and differentiation potentials of long-term cultured murine adipose-derived stromal cells. Biochemical and Biophysical Research Communications 360, 1-6, 2007.

Cho, Y. M., Kwon, S., Pak, Y. K., Seol, H. W., Choi, Y. M., Park, D. J., Park, K. S., and Lee, H. K. Dynamic Changes in Mitochondrial Biogenesis and Antioxidant Enzymes During the Spontaneous Differentiation of Human Embryonic Stem Cells. Biochemical and Biophysical Research Communications 348, 1472-1478, 2006.

Chou, Y. T., Lee, C. C., Hsiao, S. H., Lin, S. E., Lin, S. C., Chung, C. H., Chung, C. H., Kao, Y. R., Wang, Y. H., Chen, C., Wei, Y. H., and Wu, C. W. The Emerging Role of SOX2 in Cell Proliferation and Survival and Its Crosstalk with Oncogenic Signaling in Lung Cancer. Stem Cells 31, 2607-2619, 2013.

Chung, S., Dzeja, P. P., Faustino, R. S., Perez-Terzic, C., Behfar, A., and Terzic, A. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nature Clinical Practice Cardiovascular Medicine 4, 60-67, 2007.

Cirillo, N., Vicidomini, A., McCullough, M., Gambardella, A., Hassona, Y., Prime, S. S., and Colella, G. A hyaluronic acid-based compound inhibits fibroblast senescence induced by oxidative stress in vitro and prevents oral mucositis in vivo. Journal of Cellular Physiology 230, 1421-1429, 2015.

Culp, L. A., Murray, B. A., and Rollins, B. J. Fibronectin and proteoglycans as determinants of cell-substratum adhesion. Journal of Supramolecular Structure 11, 401-427, 1979.

Cyphert, J. M., Trempus, C. S., and Garantziotis, S. Size Matters: Molecular Weight Specificity of Hyaluronan Effects in Cell Biology. International Journal of Cell Biology 2015, doi: 10.1155/2015/563818, 2015.

Darzynkiewicz, Z., and Balazs, E. A. Genome integrity, stem cells and hyaluronan. Aging 4, 78-88, 2012.

Discher, D. E., Mooney, D. J., and Zandstra, P. W. Growth Factors, Matrices, and Forces Combine and Control Stem Cells. Science 324, 1673-1677, 2009.

Eckersley-Maslin, M. A., Bergmann, J. H., Lazar, Z., and Spector, D. L. Lamin A/C is Expressed in Pluripotent Mouse Embryonic Stem Cells. Nucleus 4, 53-60, 2013.

El-Safory, N. S., and Lee, C. K. Cytotoxic and antioxidant effects of unsaturated hyaluronic acid oligomers. Carbohydrate Polymers 82, 1116-1123, 2010.

Fisher, M., and Solursh, M. The influence of the substratum on mesenchyme spreading in vitro. Experimental Cell Research 123, 1-13, 1979.

Folmes, C. D. L., Nelson, T. J., Dzeja, P. P., and Terzic, A. Energy metabolism plasticity enables stemness programs. Annals of the New York Academy of Sciences 1254, 82-89, 2012.

Folmes, C. D. L., Nelson, T. J., Martinez-Fernandez, A., Arrell, D. K., Lindor, J. Z., Dzeja, P. P., Ikeda, Y., Perez-Terzic, C., and Terzic, A. Somatic Oxidative Bioenergetics Transitions into Pluripotency-Dependent Glycolysis to Facilitate Nuclear Reprogramming. Cell Metabolism 14, 264-271, 2011.

Frederick, R. L., and Shaw, J. M. Moving mitochondria: establishing distribution of an essential organelle. Traffic 8, 1668-1675, 2007.

Grishko, V., Xu, M., Ho, R., Mates, A., Watson, S., Kim, J. T., Wilson, G. L., and Pearsall, A. W. Effects of Hyaluronic Acid on Mitochondrial Function and Mitochondria-driven Apoptosis following Oxidative Stress in Human Chondrocytes. Journal of Biological Chemistry 284, 9132-9139, 2009.

Guo, H. W., Yu, J. S., Hsu, S. H., Wei, Y. H., Lee, O. K., Dong, C. Y., and Wang, H. W. Correlation of NADH fluorescence lifetime and oxidative phosphorylation metabolism in the osteogenic differentiation of human mesenchymal stem cell. Journal of Biomedical Optics 20, 170041-170048, 2015.

Herrera, M. B., Bussolati, B., Bruno, S., Morando, L., Mauriello-Romanazzi, G., Sanavio, F., Stamenkovic, I., Biancone, L., and Camuss, G. Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney International 72, 430-441, 2007.

Hsu, C. C., Wang, C. H., Wu, L. C., Hsia, C. Y., Chi, C. W., Yin, P. H., Chang, C. J., Sung, M. T., Wei, Y. H., Lu, S. H., and Lee, H. C. Mitochondrial dysfunction represses HIF-1α protein synthesis through AMPK activation in human hepatoma HepG2 cells. Biochimica et Biophysica Acta-General Subjects 1830, 4743-4751, 2013a.

Hsu, S. H., Chen, C. T., and Wei, Y. H. Inhibitory Effects of Hypoxia on Metabolic Switch and Osteogenic Differentiation of Human Mesenchymal Stem Cells. Stem Cells 31, 2779-2788, 2013b.

Jha, A. K., Xu, X., Duncan, R. L., and Jia, X. Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials 32, 2466-2478, 2011.

Joddar, B., Kitajima, T., and Ito, Y. The effects of covalently immobilized hyaluronic acid substrates on the adhesion, expansion, and differentiation of embryonic stem cells for in vitro tissue engineering. Biomaterials 32, 8404-8415, 2011.

Jornayvaz, F. R., and Shulman, G. I. Regulation of mitochondrial biogenesis. Essays in Biochemistry 47, 68-84, 2010.

Kondoh, H., Lleonart, M. E., Nakashima, Y., Yokode, M., Tanaka, M., Bernard, D., Gil, J., and Beach, D. A High Glycolytic Flux Supports the Proliferative Potential of Murine Embryonic Stem Cells. Antioxidants and Redox Signaling 9, 293-299, 2007.

Kulkarni, G. V., Lee, W., Seth, A., and McCulloch, C. A. G. Role of Mitochondrial Membrane Potential in Concanavalin A-Induced Apoptosis in Human Fibroblasts. Experimental Cell Research 245, 170-178, 1998.

Kunze, R., Rösler, M., Möller, S., Schnabelrauch, M., Riemer, T., Hempel, U., and Dieter, P. Sulfated hyaluronan derivatives reduce the proliferation rate of primary rat calvarial osteoblasts. Glycoconjugate Journal 27, 151-158, 2010.

Lakshman, M., Subramaniam, V., Rubenthiran, U., and Jothy, S. CD44 promotes resistance to apoptosis in human colon cancer cells. Experimental and Molecular Pathology 77, 18-25, 2004.

Lambricht, L., De Berdt, P., Vanacker, J., Leprince, J., Diogenes, A., Goldansaz, H., Bouzin, C., Préat, V., Dupont-Gillain, C., and Rieux, A. The type and composition of alginate and hyaluronic-based hydrogels influence the viability of stem cells of the apical papilla. Dental Materials 30, 349-361, 2014.

Leedham, S. J., Brittan, M., McDonald, S. A. C., and Wright, N. A. Intestinal stem cells. Journal of Cellular and Molecular Medicine 9, 11-24, 2005.

Liu, C. M., Chang, C. H., Yu, C. H., Hsu, C. C., and Huang, L. Hyaluronan substratum induces multidrug resistance in human mesenchymal stem cells via CD44 signaling. Cell and Tissue Research 336, 465-475, 2009.

Liu, C. M., Yu, C. H., Chang, C. H., Hsu, C. C., and Huang, L. L. H. Hyaluronan substratum holds mesenchymal stem cells in slow-cycling mode by prolonging G1 phase. Cell and Tissue Research 334, 435-443, 2008.

Liu, R. M., Sun, R. G., Zhang, L. T., Zhang, Q. F., Chen, D. X., Zhong, J. J., and Xiao, J. H. Hyaluronic acid enhances proliferation of human amniotic mesenchymal stem cells through activation of Wnt/β-catenin signaling pathway. Experimental Cell Research 345, 218-229, 2016.

Lonergan, T., Brenner, C., and Bavister, B. Differentiation-related changes in mitochondrial properties as indicators of stem cell competence. Journal of Cellular Physiology 208, 149-153, 2006.

Mandal, S., Lindgren, A. G., Srivastava, A. S., Clark, A. T., and Banerjee, U. Mitochondrial Function Controls Proliferation and Early Differentiation Potential of Embryonic Stem Cells. Stem Cells 29, 486-495, 2011.

Mannam, P., Shinn, A. S., Srivastava, A., Neamu, R. F., Walker, W. E., Bohanon, M., Merkel, J., Kang, M.-J., Cruz, C. S. D., Ahasic, A. M., Pisani, M. A., Trentalange, M., West, A. P., Shadel, G. S., Elias, J. A., and Lee, P. J. MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology 306, 604-619, 2014.

Meirelles, L. d. S., Chagastelles, P. C., and Nardi, N. B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science 119, 2204-2213, 2006.

Moreno, A., Martínez, A., Olmedillas, S., Bello, S., and de Miguel, F. Hyaluronic acid effect on adipose-derived stem cells. Biological in vitro evaluation. Revista Española de Cirugía Ortopédica y Traumatología 59, 215-221, 2015.

Murphy, M. Modulating Mitochondrial Intracellular Location as a Redox Signal. Science Signaling 5, 39, 2012.

Nolan, M. J., Koga, T., Walker, L., McCarty, R., Grybauskas, A., Giovingo, M. C., Skuran, K., Kuprys, P. V., and Knepper, P. A. sCD44 Internalization in Human Trabecular Meshwork CellsInternalization of sCD44. Investigative Ophthalmology and Visual Science 54, 592-601, 2013.

Park, J. B., Kwak, H.-J., and Lee, S.-H. Role of hyaluronan in glioma invasion. Cell Adhesion and Migration 2, 202-207, 2008.

Pattappa, G., Heywood, H. K., de Bruijn, J. D., and Lee, D. A. The metabolism of human mesenchymal stem cells during proliferation and differentiation. Journal of Cellular Physiology 226, 2562-2570, 2011.

Pattappa, G., Thorpe, S. D., Jegard, N. C., Heywood, H. K., Bruijn, J. D., and Lee , D. A. Continuous and Uninterrupted Oxygen Tension Influences the Colony Formation and Oxidative Metabolism of Human Mesenchymal Stem Cells. Tissue Engineering Part C: Methods 19, 68-79, 2013.

Piccoli, C., Ria, R., Scrima, R., Cela, O., D'Aprile, A., Boffoli, D., Falzetti, F., Tabilio, A., and Capitanio, N. Characterization of Mitochondrial and Extra-mitochondrial Oxygen Consuming Reactions in Human Hematopoietic Stem Cells: Novel Evidence of the Occurence of NAD(P)H Oxidase Activity. Journal of Biological Chemistry 280, 26467-26476, 2005.

Presti, D., and Scott, J. E. Hyaluronan-mediated protective effect against cell damage caused by enzymatically produced hydroxyl (OH·) radicals is dependent on hyaluronan molecular mass. Cell Biochemistry and Function 12, 281-288, 1994.

Prigione, A., Fauler, B., Lurz, R., Lehrach, H., and Adjaye, J. The Senescence-Related Mitochondrial/Oxidative Stress Pathway is Repressed in Human Induced Pluripotent Stem Cells. Stem Cells 28, 721-733, 2010.

Raaijmakers, M. H. G. P. ATP-binding-cassette transporters in hematopoietic stem cells and their utility as therapeutical targets in acute and chronic myeloid leukemia. Leukemia 21, 2094-2102, 2007.

Racine, R., and Mummert, M. E., Hyaluronan Endocytosis: Mechanisms of Uptake and Biological Functions, Molecular Regulation of Endocytosis, InTech, Ceresa DB, Texas, 1-11, 2012.

Ramírez, M. Á., Pericuesta, E., Yáñez-Mó, M., Palasz, A., and Gutiérrez-Adán, A. Effect of long-term culture of mouse embryonic stem cells under low oxygen concentration as well as on glycosaminoglycan hyaluronan on cell proliferation and differentiation. Cell Proliferation 44, 75-85, 2011.

Reers, M., Smith, T. W., and Chen, L. B. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30, 4480-4486, 1991.

Roden, L., Campbell, P., Fraser, J. R., Laurent, T. C., Pertoft, H., and Thompson, J. N. Enzymic pathways of hyaluronan catabolism. Ciba Foundation Symposium 143, 60-76, 1989.

Rooney, P., Kumar, S., Ponting, J., and Wang, M. The role of hyaluronan in tumour neovascularization (review). International Journal of Cancer 60, 632-636, 1995.

Saha, P., Chowdhury, A. R., Dutta, S., Chatterjee, S., Ghosh, I., and Datta, K. Autophagic Vacuolation Induced by Excess ROS Generation in HABP1/p32/gC1qR Overexpressing Fibroblasts and Its Reversal by Polymeric Hyaluronan. PLoS One 8, e78131, 2013.

Shyh-Chang, N., Daley, G. Q., and Cantley, L. C. Stem cell metabolism in tissue development and aging. Development 140, 2535-2547, 2013.

Siggins, R. W., Zhang, P., Welsh, D., LeCapitaine, N. J., and Nelson, S. Stem Cells, Phenotypic Inversion, and Differentiation. International Journal of Clinical and Experimental Medicine 1, 2-21, 2008.

Simsek, T., Kocabas, F., Zheng, J., DeBerardinis, R. J., Mahmoud, A. I., Olson, E. N., Schneider, J. W., Zhang, C. C., and Sadek, H. A. The Distinct Metabolic Profile of Hematopoietic Stem Cells Reflects Their Location in a Hypoxic Niche. Cell Stem Cell 7, 380-390, 2010.

Smith, E. R., Zhang, X. Y., Capo-chichi, C. D., Chen, X., and Xu, X. X. Increased Expression of Syne1/Nesprin-1 Facilitates Nuclear Envelope Structure Changes in Embryonic Stem Cell Differentiation. Developmental Dynamics 240, 2245-2255, 2011.

Solis, M., Chen, Y., Wong, T., Zaiatz Bittencourt, Lin, Y., and Huang, L. Hyaluronan Regulates Cell Behavior: A Potential Niche Matrix for StemCells. Biochemistry Research International 2012, 11, 2012.

Son, M. J., Jeong, B. R., Kwon, Y., and Cho, Y. S. Interference with the mitochondrial bioenergetics fuels reprogramming to pluripotency via facilitation of the glycolytic transition. The International Journal of Biochemistry and Cell Biology 45, 2512-2518, 2013.

Suda, T., Takubo, K., and Semenza, Gregg L. Metabolic Regulation of Hematopoietic Stem Cells in the Hypoxic Niche. Cell Stem Cell 9, 298-310, 2011.

Thankamony, S. P., and Knudson, W. CD44 and its association with lipid rafts are required for receptor and hyaluronan endocytosis. Journal of Biological Chemistry 281, 34601-34609, 2006.

Toole, B. P. Hyaluronan: from extracellular glue to pericellular cue. Nature Reviews Cancer 4, 528-539, 2004.

Toole, B. P., and Gross, J. The extracellular matrix of the regenerating newt limb: Synthesis and removal of hyaluronate prior to differentiation. Developmental Biology 25, 57-77, 1971.

Tothova, Z., and Gilliland, D. G. FoxO Transcription Factors and Stem Cell Homeostasis: Insights from the Hematopoietic System. Cell Stem Cell 1, 140-152, 2007.

Tseng, S. C. G. HC-HA/PTX3 Purified From Amniotic Membrane as Novel Regenerative Matrix: Insight Into Relationship Between Inflammation and RegenerationNiche Regulation of Limbal Stem Cells. Investigative Ophthalmology and Visual Science 57, 1-8, 2016.

Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science 324, 1029-1033, 2009.

Wei, Y. H., Wu, S. B., Ma, Y. S., and Lee, H. C. Respiratory Function Decline and DNA Mutation in Mitochondria, Oxidative Stress and Altered Gene Expression during Aging. Chang Gung Medical Journal 32, 113-132, 2009.

Wiesera, R. J., Faust, D., Dietrich, C., and Franz, O. p16INK4 mediates contact-inhibition of growth. Oncogene 18, 277-281, 1999.

Williams, R. S. Mitochondrial gene expression in mammalian striated muscle. Evidence that variation in gene dosage is the major regulatory event. Journal of Biological Chemistry 261, 12390-12394, 1986.

Won, E., Kim, H. R., Park, R. Y., Choi, S. Y., Shin, J., Suh, S. P., Ryang, D. W., Szardenings, M., and Shin, M. G. Direct confirmation of quiescence of CD34+CD38- leukemia stem cell populations using single cell culture, their molecular signature and clinicopathological implications. Biomed Central Cancer 15, 217, 2015.

Wong, T., Chen, Y., Liu, S., Solis, M., Yu, C., Chang, C., and Huang, L. L. H. Differential Proteomic Analysis of Human Placenta-derived Mesenchymal Stem Cells Cultured on Normal Tissue Culture Surface and Hyaluronan-coated Surface. Stem Cells International 2016, 1-16, 2016.

Wu, S. B., and Wei, Y. H. AMPK-mediated increase of glycolysis as an adaptive response to oxidative stress in human cells: Implication of the cell survival in mitochondrial diseases. Biochimica et Biophysica Acta - Molecular Basis of Disease 1822, 233-247, 2012.

Zhang, J., Felder, A., Liu, Y., Guo, L. T., Lange, S., Dalton, N. D., Gu, Y., Peterson, K. L., Mizisin, A. P., Shelton, G. D., Lieber, R. L., and Chen, J. Nesprin 1 is critical for nuclear positioning and anchorage. Human Molecular Genetics 19, 329-341, 2010.

Zhang, J., Nuebel, E., Daley, George Q., Koehler, Carla M., and Teitell, Michael A. Metabolic Regulation in Pluripotent Stem Cells during Reprogramming and Self-Renewal. Cell Stem Cell 11, 589-595, 2012.

Zhang, L., Marsboom, G., Glick, D., Zhang, Y., Toth, P. T., Jones, N., Malik, A. B., and Rehman, J. Bioenergetic shifts during transitions between stem cell states (2013 Grover Conference series). Pulmonary Circulation 4, 387-394, 2014.

Zhao, H., Tanaka, T., Mitlitski, V., Heeter, J., Balazs, E. A., and Darzynkiewicz, Z. Protective effect of hyaluronate on oxidative DNA damage in WI-38 and A549 cells. International Journal of Oncology 32, 1159-1167, 2008.

Zou, X., Li, H., Chen, L., Baatrup, A., Bünger, C., and Lind, M. Stimulation of porcine bone marrow stromal cells by hyaluronan, dexamethasone and rhBMP-2. Biomaterials 25, 5375-5385, 2004.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊