(3.236.214.19) 您好!臺灣時間:2021/05/10 06:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:余紫菁
研究生(外文):Tzu-ChingYu
論文名稱:在生物反應器培養由聚己內酯與高濃度血小板纖維蛋白與脂肪幹細胞組成具有內皮層之小管徑血管
論文名稱(外文):Polycaprolactone Combined with Platelet-Rich Fibrin and Adipose-Derived Stem Cells for Endothelialized Small Caliber Vascular Graft in Bioreactor System
指導教授:葉明龍葉明龍引用關係
指導教授(外文):Ming-Long Yeh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:生物醫學工程學系
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:80
中文關鍵詞:聚己內酯血管支架脂肪幹細胞內皮化高濃度血小板纖維蛋白生物反應器
外文關鍵詞:PCL scaffoldAdipose-derived stem cellsEndothelializationPlatelet-rich fibrinBioreactor system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:62
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
據國際衛生組織統計,心血管疾病佔全球死亡率第一死因,在2012年有將近一千七百萬人死於心血管疾病。罹患嚴重心血管疾病的病人在必要時刻需要進行血管置換手術,用全新的血管取代堵塞嚴重的血管。現行的血管種類有擷取自體的血管和人工合成的血管。人工合成的血管具有便宜.方便製作.各種管徑尺寸都可以製作…等優點,然而,在置換手術後的三年中,小管徑的血管堵塞的復發率高達五成。原因是因為取代後的人工血管無法形成新的內皮層,無法調節血管內的生理機制,導致內膜增生。在現今血管組織工程中,如何做出具有內皮層的人工血管是一大課題。故本研究利用可降解的聚己內酯與纖維蛋白製成一個適合脂肪幹細胞生長分化的血管支架,在動態環境下培養,期待能形成一個具有內皮層的人工血管。
本研究第一部分利用鹽析法製作出長五公分,內徑二毫米,外徑四毫米的,孔洞率80%的聚己內酯血管支架。將支架浸泡在脂肪幹細胞與高濃度血小板纖維蛋白的混合溶液後,靜態培養三周,形成含有豐富胞外基質的血管支架。研究中顯示透過添加高濃度血小板纖維蛋白,提高貼附在支架的細胞數量,彌補聚己內酯疏水性的缺點。除此之外,高濃度血小板纖維蛋白中的生長因子,不僅可以促進脂肪幹細胞生長,還可以誘發分化成為內皮細胞。
本研究第二部分是建立一個可以設定不同流體波型的生物反應器系統,將血管支架在該系統中進行動態培養,為期一週。為了找出適合血管支架培養的環境,設計兩組實驗去比較,分別是靜態與動態培養,層流與脈衝流環境培養。研究中顯示經過動態環境培養後,可以增加第一型膠原蛋白的合成量,且楊氏係數會上升。比較不同波型下刺激培養的血管支架,在脈衝流的刺激下,血管支架內的胞外基質增加,第一型膠原蛋白的合成量增加,血管爆破壓上升。除此之外,分化後的內皮細胞在經過動態培養後,在血管支架的管壁內側貼附,形成一層內皮層。
整體而言,利用高濃度血小板纖維蛋白刺激脂肪幹細胞在聚己內酯支架形成一個人工血管,並經由脈衝流的動態環境下接受刺激,可以加速形成具有內皮層且有一定機械強度的人工血管。

According to the report published from World Health Organization (WHO), cardiovascular diseases (CVDs) rank number one the cause of death globally. Moreover, there were estimated 17.5 million people died from CVDs in 2012. The patients suffering serious vascular disease have to receive the vascular graft surgery. There are two common vessel substitute resources, one is autologous vessels, and the other is artificial vascular graft. Comparing to autologous vessel, the artificial vessel has some advantages, such as low-cost and easy to manufacture. However, the patency of small caliber vascular graft implantation surgery is only near 50 % within 3 years. It is because of lacking the endothelium layer, that the artificial graft cannot regulate the vascular physiology conditions. Further, it leads to thrombosis, even intimal hyperplasia. In the recent researches of vascular tissue engineering, fabricating an endothelial layer vascular graft is a major issue. In this study, adipose-derived stem cells (ADSCs) were seeded on the biodegradable PCL which was modified with platelet-rich fibrin (PRF) scaffold. And this scaffold was cultured in the dynamic conditions to form an endothelium vascular graft.
In the part I of the study, 2 mm of the inner diameter, 4 mm of the outer diameter, and 5 cm of the length PCL scaffold was fabricated by salt-leaching method. The porosity of the scaffold was about 75 %, on the other hand, the pore size was around 150~250um. Then, the scaffold was immersed in the mixed solution of ADSCs suspension and platelet-rich plasma (PRP) overnight. The scaffold would be cultured in the static for 3 weeks. In the result, it showed that adding PRF can increase the cell attachment on the scaffold, which was modified the hydrophobic problem of polycaprolactone (PCL). In addition, the growth factors in the PRF not only enhanced ADSCs proliferation, but also induced the endothelial cells differentiation from ADSCs.
In the part II of the study, the ECs containing PRF/PCL scaffold was cultured in the dynamic condition for a week. The dynamic condition was made of the bioreactor system with two different fluid waveform, laminar flow and pulsatile flow. To find out the better culture environment for the vascular scaffold, there were two kinds of designed groups the static culture, and the dynamic culture, which included the laminar flow condition and the pulsatile flow condition. In the result, comparing to the static condition, the scaffold cultured in the dynamic condition showed more type I collagen and higher Young’s modulus. On the other hand, the ECM formation and the burst pressure were increased in the groups of the pulsatile condition. Moreover, the ECs aligned at the luminal side of scaffold after receiving the pulsatile stimulation.
In summary, the combination of PRF, PCL vascular scaffold, and ADSCs were successful to form the endothelial layer in the inner surface and the ECM within the scaffold. Finally, the vascular scaffold became structural and functional better through the mechanical stimulation from bioreactor system.

Table of Contents
中文摘要 I
Abstract III
致謝 V
Table of Contents VI
List of Table VIII
List of Figures IXX
Chapter 1: Introduction 1
1. Cardiovascular disease 1
2. Vascular tissue engineering 2
3. Platelet-Rich Fibrin 10
4. Bioreactor 11
5. Motivation and aim 18
Chapter 2: Materials and Methods 19
2.1 Experiment flow chart 19
2.2 Instruments 20
2.3 Materials 21
2.4 Isolation of Adipose-derived stem cells (ADSCs) 22
2.5 Preparation of Platelet-Rich Fibrin (PRF) 23
2.6 The measurement of Platelet concentration in PRF 23
2.7 Tubular structure formation 23
2.8 Endothelial cell differentiation of ADSCs 24
2.9 Histological and Immunofluorescent/ histochemistry staining 24
2.10 Preparation of PCL scaffolds 26
2.11 Bioreactor conditioning/flow volume monitoring 26
2.12 Waveform design 27
2.13 The fabrication of vascular graft 28
2.14 Scanning Electron Microscope 29
2.15 Cell proliferation assay 29
2.16 Hydrolytic degradation test 30
2.17 Porosity ratio estimation 30
2.18 Mechanical test 31
2.19 Statistical analysis 33
Chapter 3: Results 34
3.1 Part I : The PRF induce endothelial cells differentiation and ECM synthesis of ADSCs on the PCL scaffold 34
3.1.1 The fabrication of PCL scaffold 34
3.1.2 Characteristics of PRF 35
3.1.3 ADSCs express MSC characteristics 38
3.1.4 Tubular formation 39
3.1.5 PRF induces an endothelial-like phenotype 40
3.1.6 The effect of PRF of ADSCs on PCL scaffold in vitro static culture 41
3.1.7 Histological staining 42
3.2 Part II: Accelerating the formation of endothelized vascular graft by bioreactor 44
3.2.1 The bioreactor system and different waveform parameters 44
3.2.2 The effect of dynamic condition for ADSCs proliferation 46
3.2.3 The formation of endothelial layer 48
3.2.4 The analysis of mechanical properties 50
Chapter 4: Discussion 52
4.1 Part I: The PRF induce endothelial cells differentiation and ECM synthesis of ADSCs on the PCL scaffold 52
4.2 Part II: Accelerating the formation of endothelized vascular graft by bioreactor 57
Chapter 5: Conclusion 60
References 61


References
1.Cardiovascular disease fact sheet, World Health Organization,2016.
2.Cardiovascular disease risk factors, World Heart Federation,2016.
3.What is heart attck, American Heart Association,2016.
4.Treatment and drugs of heart attack, Mayo Clinic,2014.
5.Costa, S.A. and R.L. Reis, Immobilisation of catalase on the surface of biodegradable starch-based polymers as a way to change its surface characteristics. J Mater Sci Mater Med, 2004. 15(4): p. 335-42.
6.Ali, A.T., J.G. Modrall, J. Hocking, R.J. Valentine, H. Spencer, J.F. Eidt, and G.P. Clagett, Long-term results of the treatment of aortic graft infection by in situ replacement with femoral popliteal vein grafts. J Vasc Surg, 2009. 50(1): p. 30-9.
7.Matia, I., L. Janousek, T. Marada, and M. Adamec, Cold-stored venous allografts in the treatment of critical limb ischaemia. Eur J Vasc Endovasc Surg, 2007. 34(4): p. 424-31.
8.Katzman, H.E., M.H. Glickman, A.F. Schild, R.M. Fujitani, and J.H. Lawson, Multicenter evaluation of the bovine mesenteric vein bioprostheses for hemodialysis access in patients with an earlier failed prosthetic graft. J Am Coll Surg, 2005. 201(2): p. 223-30.
9.Chlupac, J., E. Filova, and L. Bacakova, Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res, 2009. 58 Suppl 2: p. S119-39.
10.Mills, I., C.R. Cohen, K. Kamal, G. Li, T. Shin, W. Du, and B.E. Sumpio, Strain activation of bovine aortic smooth muscle cell proliferation and alignment: study of strain dependency and the role of protein kinase A and C signaling pathways. J Cell Physiol, 1997. 170(3): p. 228-34.
11.Naito, Y., T. Shinoka, D. Duncan, N. Hibino, D. Solomon, M. Cleary, A. Rathore, C. Fein, S. Church, and C. Breuer, Vascular tissue engineering: towards the next generation vascular grafts. Adv Drug Deliv Rev, 2011. 63(4-5): p. 312-23.
12.Du, Y., M. Ghodousi, H. Qi, N. Haas, W. Xiao, and A. Khademhosseini, Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Biotechnol Bioeng, 2011. 108(7): p. 1693-703.
13.Giddens, D.P., C.K. Zarins, and S. Glagov, The role of fluid mechanics in the localization and detection of atherosclerosis. J Biomech Eng, 1993. 115(4B): p. 588-94.
14.Davies, P.F., Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med, 2009. 6(1): p. 16-26.
15.Munoz-Pinto, D.J., X. Qu, L. Bansal, H.N. Hayenga, J. Hahn, and M.S. Hahn, Relative impact of form-induced stress vs. uniaxial alignment on multipotent stem cell myogenesis. Acta Biomater, 2012. 8(11): p. 3974-81.
16.G, N., A. Tan, B. Gundogan, Y. Farhatnia, L. Nayyer, S. Mahdibeiraghdar, J. Rajadas, P. De Coppi, A.H. Davies, and A.M. Seifalian, Tissue engineering vascular grafts a fortiori: looking back and going forward. Expert Opin Biol Ther, 2015. 15(2): p. 231-44.
17.Thomas, L.V., V. Lekshmi, and P.D. Nair, Tissue engineered vascular grafts--preclinical aspects. Int J Cardiol, 2013. 167(4): p. 1091-100.
18.Bassaneze, V., V.G. Barauna, C. Lavini-Ramos, J. Kalil, I.T. Schettert, A.A. Miyakawa, and J.E. Krieger, Shear stress induces nitric oxide-mediated vascular endothelial growth factor production in human adipose tissue mesenchymal stem cells. Stem Cells Dev, 2010. 19(3): p. 371-8.
19.Kim, D.H., S.J. Heo, S.H. Kim, J.W. Shin, S.H. Park, and J.W. Shin, Shear stress magnitude is critical in regulating the differentiation of mesenchymal stem cells even with endothelial growth medium. Biotechnol Lett, 2011. 33(12): p. 2351-9.
20.Makarevich, P.I., M.A. Boldyreva, E.V. Gluhanyuk, A.Y. Efimenko, K.V. Dergilev, E.K. Shevchenko, G.V. Sharonov, J.O. Gallinger, P.A. Rodina, S.S. Sarkisyan, Y.C. Hu, and Y.V. Parfyonova, Enhanced angiogenesis in ischemic skeletal muscle after transplantation of cell sheets from baculovirus-transduced adipose-derived stromal cells expressing VEGF165. Stem Cell Res Ther, 2015. 6: p. 204.
21.Fang, B., M. Shi, L. Liao, S. Yang, Y. Liu, and R.C. Zhao, Multiorgan engraftment and multilineage differentiation by human fetal bone marrow Flk1+/CD31-/CD34- Progenitors. J Hematother Stem Cell Res, 2003. 12(6): p. 603-13.
22.Fang, B., L. Liao, M. Shi, S. Yang, and R.C. Zhao, Multipotency of Flk1CD34 progenitors derived from human fetal bone marrow. J Lab Clin Med, 2004. 143(4): p. 230-40.
23.Nishikawa, S.I., S. Nishikawa, M. Hirashima, N. Matsuyoshi, and H. Kodama, Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development, 1998. 125(9): p. 1747-57.
24.Cao, Y., Z. Sun, L. Liao, Y. Meng, Q. Han, and R.C. Zhao, Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun, 2005. 332(2): p. 370-9.
25.Colazzo, F., F. Alrashed, P. Saratchandra, I. Carubelli, A.H. Chester, M.H. Yacoub, P.M. Taylor, and P. Somers, Shear stress and VEGF enhance endothelial differentiation of human adipose-derived stem cells. Growth Factors, 2014. 32(5): p. 139-49.
26.Fischer, L.J., S. McIlhenny, T. Tulenko, N. Golesorkhi, P. Zhang, R. Larson, J. Lombardi, I. Shapiro, and P.J. DiMuzio, Endothelial differentiation of adipose-derived stem cells: effects of endothelial cell growth supplement and shear force. J Surg Res, 2009. 152(1): p. 157-66.
27.Shojaei, S., M. Tafazzoli-Shahdpour, M.A. Shokrgozar, and N. Haghighipour, Effects of mechanical and chemical stimuli on differentiation of human adipose-derived stem cells into endothelial cells. Int J Artif Organs, 2013. 36(9): p. 663-73.
28.Lu, T., Y. Li, and T. Chen, Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. Int J Nanomedicine, 2013. 8: p. 337-50.
29.Schmidt, C.E. and J.M. Baier, Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials, 2000. 21(22): p. 2215-31.
30.Huynh, T., G. Abraham, J. Murray, K. Brockbank, P.O. Hagen, and S. Sullivan, Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat Biotechnol, 1999. 17(11): p. 1083-6.
31.Cleary, M.A., E. Geiger, C. Grady, C. Best, Y. Naito, and C. Breuer, Vascular tissue engineering: the next generation. Trends Mol Med, 2012. 18(7): p. 394-404.
32.Park, S.H., D.S. Park, J.W. Shin, Y.G. Kang, H.K. Kim, T.R. Yoon, and J.W. Shin, Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique: PCL versus PLGA. J Mater Sci Mater Med, 2012. 23(11): p. 2671-8.
33.Yang, W., J. Fu, D. Wang, T. Wang, H. Wang, S. Jin, and N. He, Study on chitosan/polycaprolactone blending vascular scaffolds by electrospinning. J Biomed Nanotechnol, 2010. 6(3): p. 254-9.
34.Shaikh, F.M., A. Callanan, E.G. Kavanagh, P.E. Burke, P.A. Grace, and T.M. McGloughlin, Fibrin: a natural biodegradable scaffold in vascular tissue engineering. Cells Tissues Organs, 2008. 188(4): p. 333-46.
35.Arrigoni, C., D. Camozzi, and A. Remuzzi, Vascular tissue engineering. Cell Transplant, 2006. 15 Suppl 1: p. S119-25.
36.Sinha, S., M.H. Hoofnagle, P.A. Kingston, M.E. McCanna, and G.K. Owens, Transforming growth factor-beta1 signaling contributes to development of smooth muscle cells from embryonic stem cells. Am J Physiol Cell Physiol, 2004. 287(6): p. C1560-8.
37.Bai, H., Y. Gao, M. Arzigian, D.M. Wojchowski, W.S. Wu, and Z.Z. Wang, BMP4 regulates vascular progenitor development in human embryonic stem cells through a Smad-dependent pathway. J Cell Biochem, 2010. 109(2): p. 363-74.
38.Abilez, O., P. Benharash, M. Mehrotra, E. Miyamoto, A. Gale, J. Picquet, C. Xu, and C. Zarins, A novel culture system shows that stem cells can be grown in 3D and under physiologic pulsatile conditions for tissue engineering of vascular grafts. J Surg Res, 2006. 132(2): p. 170-8.
39.Dan, P., E. Velot, V. Decot, and P. Menu, The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells. J Cell Sci, 2015. 128(14): p. 2415-22.
40.Dohan Ehrenfest, D.M., How to optimize the preparation of leukocyte- and platelet-rich fibrin (L-PRF, Choukroun's technique) clots and membranes: introducing the PRF Box. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2010. 110(3): p. 275-8; author reply 278-80.
41.Simonpieri, A., M. Del Corso, A. Vervelle, R. Jimbo, F. Inchingolo, G. Sammartino, and D.M. Dohan Ehrenfest, Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 2: Bone graft, implant and reconstructive surgery. Curr Pharm Biotechnol, 2012. 13(7): p. 1231-56.
42.Prakash, S. and A. Thakur, Platelet concentrates: past, present and future. J Maxillofac Oral Surg, 2011. 10(1): p. 45-9.
43.Dohan Ehrenfest, D.M., G.M. de Peppo, P. Doglioli, and G. Sammartino, Slow release of growth factors and thrombospondin-1 in Choukroun's platelet-rich fibrin (PRF): a gold standard to achieve for all surgical platelet concentrates technologies. Growth Factors, 2009. 27(1): p. 63-9.
44.Aspenberg, P. and O. Virchenko, Platelet concentrate injection improves Achilles tendon repair in rats. Acta Orthop Scand, 2004. 75(1): p. 93-9.
45.Yu, W., J. Wang, and J. Yin, Platelet-rich plasma: a promising product for treatment of peripheral nerve regeneration after nerve injury. Int J Neurosci, 2011. 121(4): p. 176-80.
46.Mishra, A. and T. Pavelko, Treatment of chronic elbow tendinosis with buffered platelet-rich plasma. Am J Sports Med, 2006. 34(11): p. 1774-8.
47.Andia, I., M. Sanchez, and N. Maffulli, Joint pathology and platelet-rich plasma therapies. Expert Opin Biol Ther, 2012. 12(1): p. 7-22.
48.Dong, Z., B. Li, B. Liu, S. Bai, G. Li, A. Ding, J. Zhao, and Y. Liu, Platelet-rich plasma promotes angiogenesis of prefabricated vascularized bone graft. J Oral Maxillofac Surg, 2012. 70(9): p. 2191-7.
49.Por, Y.C., L. Shi, M. Samuel, C. Song, and V.K. Yeow, Use of tissue sealants in face-lifts: a metaanalysis. Aesthetic Plast Surg, 2009. 33(3): p. 336-9.
50.Aimetti, M., F. Romano, C. Dellavia, and S. De Paoli, Sinus grafting using autogenous bone and platelet-rich plasma: histologic outcomes in humans. Int J Periodontics Restorative Dent, 2008. 28(6): p. 585-91.
51.Marx, R.E., Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg, 2004. 62(4): p. 489-96.
52.Sujeet V. K and Ritam N.T, Platelet-Rich Fibrin as a Biofuel for Tissue Regeneration. Biomaterials, 2013.
53.Loike, J.D., B. Sodeik, L. Cao, S. Leucona, J.I. Weitz, P.A. Detmers, S.D. Wright, and S.C. Silverstein, CD11c/CD18 on neutrophils recognizes a domain at the N terminus of the A alpha chain of fibrinogen. Proc Natl Acad Sci U S A, 1991. 88(3): p. 1044-8.
54.Kawamura, M. and M.R. Urist, Human fibrin is a physiologic delivery system for bone morphogenetic protein. Clin Orthop Relat Res, 1988(235): p. 302-10.
55.Guilak, F. and F.P. Baaijens, Functional tissue engineering: Ten more years of progress. J Biomech, 2014. 47(9): p. 1931-2.
56.Cukierman, E., R. Pankov, D.R. Stevens, and K.M. Yamada, Taking cell-matrix adhesions to the third dimension. Science, 2001. 294(5547): p. 1708-12.
57.Freed, L.E., R. Langer, I. Martin, N.R. Pellis, and G. Vunjak-Novakovic, Tissue engineering of cartilage in space. Proc Natl Acad Sci U S A, 1997. 94(25): p. 13885-90.
58.Holy, C.E., M.S. Shoichet, and J.E. Davies, Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds: investigating initial cell-seeding density and culture period. J Biomed Mater Res, 2000. 51(3): p. 376-82.
59.Kim, B.S., A.J. Putnam, T.J. Kulik, and D.J. Mooney, Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices. Biotechnol Bioeng, 1998. 57(1): p. 46-54.
60.Waller, B., M. Munukka, J. Multanen, T. Rantalainen, T. Poyhonen, M.T. Nieminen, I. Kiviranta, H. Kautiainen, H. Selanne, J. Dekker, S. Sipila, U.M. Kujala, A. Hakkinen, and A. Heinonen, Effects of a progressive aquatic resistance exercise program on the biochemical composition and morphology of cartilage in women with mild knee osteoarthritis: protocol for a randomised controlled trial. BMC Musculoskelet Disord, 2013. 14: p. 82.
61.Wendt, D., A. Marsano, M. Jakob, M. Heberer, and I. Martin, Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity. Biotechnol Bioeng, 2003. 84(2): p. 205-14.
62.Sutherland, R.M., B. Sordat, J. Bamat, H. Gabbert, B. Bourrat, and W. Mueller-Klieser, Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer Res, 1986. 46(10): p. 5320-9.
63.Ishaug, S.L., G.M. Crane, M.J. Miller, A.W. Yasko, M.J. Yaszemski, and A.G. Mikos, Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res, 1997. 36(1): p. 17-28.
64.Gooch, K.J., J.H. Kwon, T. Blunk, R. Langer, L.E. Freed, and G. Vunjak-Novakovic, Effects of mixing intensity on tissue-engineered cartilage. Biotechnol Bioeng, 2001. 72(4): p. 402-7.
65.Martin, I., B. Obradovic, L.E. Freed, and G. Vunjak-Novakovic, Method for quantitative analysis of glycosaminoglycan distribution in cultured natural and engineered cartilage. Ann Biomed Eng, 1999. 27(5): p. 656-62.
66.Davisson, T., R.L. Sah, and A. Ratcliffe, Perfusion increases cell content and matrix synthesis in chondrocyte three-dimensional cultures. Tissue Eng, 2002. 8(5): p. 807-16.
67.Akhyari, P., P.W. Fedak, R.D. Weisel, T.Y. Lee, S. Verma, D.A. Mickle, and R.K. Li, Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation, 2002. 106(12 Suppl 1): p. I137-42.
68.Demarteau, O., D. Wendt, A. Braccini, M. Jakob, D. Schafer, M. Heberer, and I. Martin, Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem Biophys Res Commun, 2003. 310(2): p. 580-8.
69.Reichardt, A., B. Polchow, M. Shakibaei, W. Henrich, R. Hetzer, and C. Lueders, Large scale expansion of human umbilical cord cells in a rotating bed system bioreactor for cardiovascular tissue engineering applications. Open Biomed Eng J, 2013. 7: p. 50-61.
70.Gong, X., H. Liu, X. Ding, M. Liu, X. Li, L. Zheng, X. Jia, G. Zhou, Y. Zou, J. Li, X. Huang, and Y. Fan, Physiological pulsatile flow culture conditions to generate functional endothelium on a sulfated silk fibroin nanofibrous scaffold. Biomaterials, 2014. 35(17): p. 4782-91.
71.Williams, C. and T.M. Wick, Perfusion bioreactor for small diameter tissue-engineered arteries. Tissue Eng, 2004. 10(5-6): p. 930-41.
72.Hahn, M.S., M.K. McHale, E. Wang, R.H. Schmedlen, and J.L. West, Physiologic pulsatile flow bioreactor conditioning of poly(ethylene glycol)-based tissue engineered vascular grafts. Ann Biomed Eng, 2007. 35(2): p. 190-200.
73.Zvaifler, N.J., L. Marinova-Mutafchieva, G. Adams, C.J. Edwards, J. Moss, J.A. Burger, and R.N. Maini, Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res, 2000. 2(6): p. 477-88.
74.Knapik, A., K. Kornmann, K. Kerl, M. Calcagni, C.A. Schmidt, B. Vollmar, P. Giovanoli, and N. Lindenblatt, In vivo evaluation of wound bed reaction and graft performance after cold skin graft storage: new targets for skin tissue engineering. J Burn Care Res, 2014. 35(4): p. e187-96.
75.Furman, M.I., L. Liu, S.E. Benoit, R.C. Becker, M.R. Barnard, and A.D. Michelson, The cleaved peptide of the thrombin receptor is a strong platelet agonist. Proc Natl Acad Sci U S A, 1998. 95(6): p. 3082-7.
76.Froum, S.J., S.S. Wallace, D.P. Tarnow, and S.C. Cho, Effect of platelet-rich plasma on bone growth and osseointegration in human maxillary sinus grafts: three bilateral case reports. Int J Periodontics Restorative Dent, 2002. 22(1): p. 45-53.
77.Matsumura, T., K. Wolff, and P. Petzelbauer, Endothelial cell tube formation depends on cadherin 5 and CD31 interactions with filamentous actin. J Immunol, 1997. 158(7): p. 3408-16.
78.Gautam, S., A.K. Dinda, and N.C. Mishra, Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C Mater Biol Appl, 2013. 33(3): p. 1228-35.
79.Piskin, E., Biodegradable polymers as biomaterials. J Biomater Sci Polym Ed, 1995. 6(9): p. 775-95.
80.Barbanti, S.H., A.R. Santos, Jr., C.A. Zavaglia, and E.A. Duek, Porous and dense poly(L-lactic acid) and poly(D,L-lactic acid-co-glycolic acid) scaffolds: in vitro degradation in culture medium and osteoblasts culture. J Mater Sci Mater Med, 2004. 15(12): p. 1315-21.
81.Yan, L.P., J.M. Oliveira, A.L. Oliveira, and R.L. Reis, In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds. J Biomed Mater Res B Appl Biomater, 2015. 103(4): p. 888-98.
82.Sarazin, P., X. Roy, and B.D. Favis, Controlled preparation and properties of porous poly(L-lactide) obtained from a co-continuous blend of two biodegradable polymers. Biomaterials, 2004. 25(28): p. 5965-78.
83.Karageorgiou, V. and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005. 26(27): p. 5474-91.
84.Guan, J., K.L. Fujimoto, M.S. Sacks, and W.R. Wagner, Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials, 2005. 26(18): p. 3961-71.
85.Ma, Z., Z. Mao, and C. Gao, Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B Biointerfaces, 2007. 60(2): p. 137-57.
86.Dohan Ehrenfest, D.M., T. Bielecki, R. Jimbo, G. Barbe, M. Del Corso, F. Inchingolo, and G. Sammartino, Do the fibrin architecture and leukocyte content influence the growth factor release of platelet concentrates? An evidence-based answer comparing a pure platelet-rich plasma (P-PRP) gel and a leukocyte- and platelet-rich fibrin (L-PRF). Curr Pharm Biotechnol, 2012. 13(7): p. 1145-52.
87.Birger B, Birgit .H, Desmond.H, and Lisbeth .T, A two-step fibrinogen--fibrin transition in blood coagulation. Nature, 1978. 275, 501 - 505.
88.Linnes, M.P., B.D. Ratner, and C.M. Giachelli, A fibrinogen-based precision microporous scaffold for tissue engineering. Biomaterials, 2007. 28(35): p. 5298-306.
89.Jockenhoevel, S., G. Zund, S.P. Hoerstrup, K. Chalabi, J.S. Sachweh, L. Demircan, B.J. Messmer, and M. Turina, Fibrin gel -- advantages of a new scaffold in cardiovascular tissue engineering. Eur J Cardiothorac Surg, 2001. 19(4): p. 424-30.
90.Harding, S.I., A. Afoke, R.A. Brown, A. MacLeod, P.A. Shamlou, and P. Dunnill, Engineering and cell attachment properties of human fibronectin-fibrinogen scaffolds for use in tissue engineered blood vessels. Bioprocess Biosyst Eng, 2002. 25(1): p. 53-9.
91.Vaz, R., G.G. Martins, S. Thorsteinsdottir, and G. Rodrigues, Fibronectin promotes migration, alignment and fusion in an in vitro myoblast cell model. Cell Tissue Res, 2012. 348(3): p. 569-78.
92.Cooke, M.J., S.R. Phillips, D.S. Shah, D. Athey, J.H. Lakey, and S.A. Przyborski, Enhanced cell attachment using a novel cell culture surface presenting functional domains from extracellular matrix proteins. Cytotechnology, 2008. 56(2): p. 71-9.
93.Zhang, W., Y. Zhu, J. Li, Q. Guo, J. Peng, S. Liu, J. Yang, and Y. Wang, Cell-Derived Extracellular Matrix: Basic Characteristics and Current Applications in Orthopedic Tissue Engineering. Tissue Eng Part B Rev, 2016. 22(3): p. 193-207.
94.Nguyen, H., J.J. Qian, R.S. Bhatnagar, and S. Li, Enhanced cell attachment and osteoblastic activity by P-15 peptide-coated matrix in hydrogels. Biochem Biophys Res Commun, 2003. 311(1): p. 179-86.
95.Lacci, K.M. and A. Dardik, Platelet-rich plasma: support for its use in wound healing. Yale J Biol Med, 2010. 83(1): p. 1-9.
96.Middleton, K.K., V. Barro, B. Muller, S. Terada, and F.H. Fu, Evaluation of the effects of platelet-rich plasma (PRP) therapy involved in the healing of sports-related soft tissue injuries. Iowa Orthop J, 2012. 32: p. 150-63.
97.Bastijanic, J.M., F.L. Kligman, R.E. Marchant, and K. Kottke-Marchant, Dual biofunctional polymer modifications to address endothelialization and smooth muscle cell integration of ePTFE vascular grafts. J Biomed Mater Res A, 2016. 104(1): p. 71-81.
98.Oswald, J., S. Boxberger, B. Jorgensen, S. Feldmann, G. Ehninger, M. Bornhauser, and C. Werner, Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells, 2004. 22(3): p. 377-84.
99.Gimble, J.M., A.J. Katz, and B.A. Bunnell, Adipose-derived stem cells for regenerative medicine. Circ Res, 2007. 100(9): p. 1249-60.
100.Mertsching, H. and J. Hansmann, Bioreactor technology in cardiovascular tissue engineering. Adv Biochem Eng Biotechnol, 2009. 112: p. 29-37.
101.Adamo, L. and G. Garcia-Cardena, Directed stem cell differentiation by fluid mechanical forces. Antioxid Redox Signal, 2011. 15(5): p. 1463-73.
102.Prockop, D.J. and J.Y. Oh, Medical therapies with adult stem/progenitor cells (MSCs): a backward journey from dramatic results in vivo to the cellular and molecular explanations. J Cell Biochem, 2012. 113(5): p. 1460-9.
103.Gupta, V. and K.J. Grande-Allen, Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovasc Res, 2006. 72(3): p. 375-83.
104.Gouverneur, M., J.A. Spaan, H. Pannekoek, R.D. Fontijn, and H. Vink, Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol, 2006. 290(1): p. H458-2.
105.Jufri, N.F., A. Mohamedali, A. Avolio, and M.S. Baker, Mechanical stretch: physiological and pathological implications for human vascular endothelial cells. Vasc Cell, 2015. 7: p. 8.
106.Anwar, M.A., J. Shalhoub, C.S. Lim, M.S. Gohel, and A.H. Davies, The effect of pressure-induced mechanical stretch on vascular wall differential gene expression. J Vasc Res, 2012. 49(6): p. 463-78.
107.Liu, J. and S. Agarwal, Mechanical signals activate vascular endothelial growth factor receptor-2 to upregulate endothelial cell proliferation during inflammation. J Immunol, 2010. 185(2): p. 1215-21.
108.Osawa, M., M. Masuda, K. Kusano, and K. Fujiwara, Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? J Cell Biol, 2002. 158(4): p. 773-85.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔