(3.237.48.165) 您好!臺灣時間:2021/05/09 13:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張雅涵
研究生(外文):Ya-HanChang
論文名稱:考量恢復力下危險物品運輸路徑規劃問題-多目標妥協權重法之應用
論文名稱(外文):A Multi-objective Compromise Weight Model for Hazmat Transportation Routing Problem -With the Consideration of Resilience
指導教授:胡大瀛胡大瀛引用關係
指導教授(外文):Ta-Yin Hu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:交通管理科學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:85
中文關鍵詞:危險物品運輸風險評估路線選擇妥協權重法恢復力
外文關鍵詞:hazmat transportationrisk assessmentroute choicecompromise weight algorithmresilience
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高雄市為台灣的石化工業重鎮,近年來因管線運輸的發達,許多工業區選擇以管線運輸做為運送化學品的方式。但自從2014年摧殘高雄南部地區的管線氣爆事件發生後,高雄居民對於管線運輸的安全性產生疑慮;因此,危險物品運輸的方式逐漸由管線運輸轉換為化學槽車運輸。但槽車的行駛依舊對居民安危造成嚴重影響,因而突顯路線選擇對於危險物品運輸的重要性。
本研究建構一妥協規劃模型,在考量旅行成本、旅行風險以及恢復力下,選擇多種目標下的運輸路線。研究目的之一為以傳統風險模型定義路徑風險,利用風險評估標的,如高雄道路特性、人口分布、路段長度、危險物品特性及意外事故率等,建構出得以衡量路段及路線之風險評估指標。再者,本研究納入恢復力的概念,在危險物品運送過程中,意外是可能發生的,較高的恢復力表示路網有較好的能力得以從意外中恢復;因此路線的恢復力亦為須納入考量之重要議題。在危險物品運輸的議題當中,消防資源的充足與否是決定路網恢復能力的主要因素之一,因此本研究以消防資源作為恢復力的指標。
本研究將此模型在實際的高雄路網上測試,實驗結果顯現出此方法的可行性,並且能應用於不同地區,根據地區特性調整,得出對該地區環境及居民影響最小的危險物品運輸路網給相關單位適當的建議。
In 2014, the Kaohsiung City in Taiwan suffered from the gas pipeline explosions during the midnight, 32 people were killed, and hundreds of people injured. After the incidents, hazmat transportation on roads are initiated to avoid pipeline transportation. In order to fulfill the needs of chemicals, numerous chemical tank cars are needed, but those chemical tank cars travel on road also pose huge dangers to citizens, which highlights the importance of choosing the most appropriate path for hazmat transportation.
The study proposes a compromise weight algorithm for selecting the transportation routes under multi-objectives, including travel cost, travel risk and resilience, and a formulation of the multi-objective route selection problem is developed. One of the purposes of this research is to define risk by traditional risk model. By several risk assessment indexes such as road characteristics, population distribution, link length, hazmat’ characteristics, and accident rate, we establish a risk measurement indicator which could evaluate the risk of each link and route. Furthermore, we put the concept of resilience into this research, during the process of hazmat transportation, accidents may happen, higher resilience represents the network having better capability to recover from the accident. In the field of hazmat transportation, fire service resources is adequate or not is one of the main factors that having impact on network resilience. Hence, we put fire service resources as the index of resilience.
The proposed method is tested in a realistic road network in Kaohsiung, Taiwan. The results of experiments show the feasibility of the proposed algorithm and also propose appropriate advices for relative authorities to construct a hazmat transportation network which having the least impact to the environment and residents. The model is also appropriate for other area and can be adjusted based on the characteristics of the tested area.

ABSTRACT I
摘要 III
致謝 IV
TABLE OF CONTENTS V
LIST OF TABLES VIII
LIST OF FIGURES X
CHAPTER 1 INTRODUCTION 1
1.1 Research Background and Motivation 1
1.2 Research Objective 3
1.3 Research Flow Chart 3
CHAPTER 2 LITERATURE REVIEW 6
2.1 Hazmat Transportation 6
2.1.1 Definitions and Classifications of Hazmat Transportation 6
2.1.2 Researches of Hazmat Transportation 7
2.1.3 Practical Case for Hazmat Transportation Accidents 9
2.2 Risk Assessment 10
2.3 Resilience 12
2.3.1 Definitions of Resilience 12
2.3.2 Emergency Response Capability 13
2.4 Multi-objective Optimization Approach 15
2.4.1 Multi-objective Optimization and Pareto Front 16
2.4.2 Applications of multi-objectives algorithms 18
2.5 Compromise Weight Algorithm 20
2.5.1 Formulations of compromise weight model 21
2.5.2 Characteristics of Compromise Weight and Appraisal index 24
2.6 Summary 25
CHAPTER 3 RESEARCH METHODOLOGY 27
3.1 Problem Statement and Research Assumptions 27
3.2 Research Framework 28
3.2.1 Research Framework of Static Model 28
3.2.2 Research Framework of Dynamic Model 30
3.3 Model Formulation 33
3.3.1 Definitions of Criteria 33
3.3.2 Formulation 36
CHAPTER 4 ALGORITHM FRAMEWORK AND DATA DESCRIPTION 43
4.1 Algorithm Framework 43
4.2 Data Description 46
4.2.1 Basic Data of Experimental Network 46
4.2.2 Accident Rate 47
4.2.3 Population Density 49
4.2.4 Conditional Probability of Release 51
4.2.5 Hazmat Impact Radius 51
4.2.6 Fire Service Resource 54
CHAPTER 5 EMPIRICAL STUDY-STATIC MODEL 57
5.1 Experiment Design 57
5.2 Results of alternatives of each origin-destination pair 62
5.3 Results of compromise weight algorithm 64
5.4 Summary 69
CHAPTER 6 EMPIRICAL STUDY-DYNAMIC MODEL 70
6.1 Experiment Design 70
6.2 Results of the Dynamic Model 73
6.3 Summary 79
CHAPTER 7 CONCLUSIONS AND SUGGESIONS 81
7.1 Conclusions 81
7.2 Suggestions 82
REFERENCES 83
1.Abkowitz, M., M. Lepofsky, and P. Cheng. (1992). “Selecting Criteria for Designating Hazardous Materials Highway Routes. Transp. Res. 1333, 30–35.
2.Abkowitz, M. and Cheng, P. D. M. (1988). “Developing a risk/cost framework for routing truck movements of hazardous materials. Accident Analysis and Prevention, 20(1), 39-51.
3.Alumur, S. and Kara, B. Y. (2007). “A new model for the hazardous waste location-routing problem. Computers and Operations Research, 34(5), 1406-1423.
4.Berman, O., Verter, V., and Kara, B. Y. (2007). “Designing emergency response networks for hazardous materials transportation. Computers and operations research, 34(5), 1374-1388.
5.Bianco, L., Caramia, M., and Giordani, S. (2009). “A bilevel flow model for hazmat transportation network design. Transportation Research Part C: Emerging Technologies, 17(2), 175-196.
6.Britton, N. R. and Clark, G. J. (2000). “From response to resilience: emergency management reform in New Zealand. Natural Hazards Review, 1(3), 145-150.
7.Chakrabarti, U. K. and Parikh, J. K. (2013). “Risk-based route evaluation against country-specific criteria of risk tolerability for hazmat transportation through Indian State Highways. Journal of Loss Prevention in the Process Industries,26(4), 723-736.
8.Cohen M. A. and Lee H. L.,(1998)“ Strategic Analysis of Integrated Production-Distribution Systems:Models and Methods, Operations Research,36(2), pp.216-228
9.Current, J. and Ratick, S. (1995). “A model to assess risk, equity and efficiency in facility location and transportation of hazardous materials. Location Science,3(3), 187-201.
10.Deb, K. (2001). “Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley and Sons.
11.Deb, K. (2011), “Multi-Objective Optimization Using Evolutionary Algorithms: An Introduction, KanGAL Report No.2011003.
12.Erkut, E. and Verter, V. (1995). “A framework for hazardous materials transport risk assessment. Risk Analysis, 15(5), 589-601.
13.Erkut, E. and Verter, V. (1998). “Modeling of transport risk for hazardous materials. Operations research, 46(5), 625-642.
14.Giannikos, I. (1998). “A multiobjective programming model for locating treatment sites and routing hazardous wastes. European Journal of Operational Research, 104(2), 333-342.
15.Godschalk, D. R. (2003). “Urban hazard mitigation: Creating resilient cities, Natural Hazards Review, 4(3), 136-143.
16.Harwood, D. W., Viner, J. G., and Russell, E. R. (1993). “Procedure for developing truck accident and release rates for hazmat routing, Journal of transportation engineering, 119(2), 189-199.
17.Holling, C. S. (1973). “Resilience and stability of ecological systems, Annual Review of Ecology and Systematics, 4, 1-23.
18.Huang, B., Cheu, R. L., and Liew, Y. S. (2004). “GIS and genetic algorithms for HAZMAT route planning with security considerations. International Journal of Geographical Information Science, 18(8), 769-787
19.Kang, Y., Batta, R., and Kwon, C. (2014). “Generalized route planning model for hazardous material transportation with var and equity considerations. Computers and Operations Research, 43, 237-247.
20.Kao, C. and Hung, H. T. (2005). “Data envelopment analysis with common weights: the compromise solution approach. Journal of the Operational Research Society, 56(10), 1196-1203.
21.List, G. F., Mirchandani, P. B., Turnquist, M. A., and Zografos, K. G. (1991). “Modeling and analysis for hazardous materials transportation: Risk analysis, routing/scheduling and facility location. Transportation Science, 25(2), 100-114.
22.Li, R. and Leung, Y. (2011). “Multi-objective route planning for dangerous goods using compromise programming. Journal of geographical systems, 13(3), 249-271.
23.Li, R., Leung, Y., Huang, B., and Lin, H. (2013). “A genetic algorithm for multiobjective dangerous goods route planning. International Journal of Geographical Information Science, 27(6), 1073-1089
24.Li, X. and Jiang, H. (2013). “Optimization for hazardous materials road transportation based on multi-objective method. In Proceedings of the 2013 Third International Conference on Intelligent System Design and Engineering Applications (pp. 1034-1037). IEEE Computer Society.
25.Murray-Tuite, P. M. (2006). “A comparison of transportation network resilience under simulated system optimum and user equilibrium conditions, Simulation Conference, 2006. WSC 06. Proceedings of the Winter, 1398-1405.
26.Pradhananga, R., Taniguchi, E., and Yamada, T. (2010). “Ant colony system based routing and scheduling for hazardous material transportation. Procedia-Social and Behavioral Sciences, 2(3), 6097-6108.
27.United Nations, Recommendations on the Transport of Dangerous Goods, 17th ed., New York and Geneva, 2011.
28.Reggiani, A. (2012). “Network resilience for transport security: Some methodological considerations, Transport Policy, 28, 63-68.
29.Tamvakis, P. and Xenidis, Y. (2012). “Resilience in transportation systems, Procedia-Social and Behavioral Sciences, 48, 3441-3450.
30.Tierney, K. and Bruneau, M. (2007). “Conceptualizing and measuring resilience: A key to disaster loss reduction. TR news, (250).
31.Zografos, K. G. and Androutsopoulos, K. N. (2004). “A heuristic algorithm for solving hazardous materials distribution problems. European Journal of Operational Research, 152(2), 507-519.
32.洪僖黛. (2005). 妥協權重資料包絡分析模式之求解與應用. 成功大學工業與資訊管理學系學位論文, 1-103.
33.陳一昌(2011),「道路危險物品運送風險評估機制之規劃研究」,交通部運輸研究所,民國100年。
34.張新立(1990),「台灣地區危險物品道路運輸路線風險評估模式之研究」,運輸計畫季刊,第十九卷第四期p389-p408,民國79年。
35.張承明等(2005),「危險物品運輸之事故危害分析-引火性液體」,行政院勞工委員會勞工安全衛生研究所,民國94年。
36.高雄市消防統計年報(2014),高雄市政府消防局。
37.國道事故檢討分析報告(2014),交通部國道高速公路局。
38.統計年報(2014),交通部國道高速公路局。
39.統計年報(2014),交通部公路總局。
40.統計年報(2014),內政部警政署。
41.里別人口統計 (2014),高雄市政府民政局。
42.各里面積統計,高雄市政府民政局。
電子全文 電子全文(網際網路公開日期:20210901)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔