(18.206.238.77) 您好!臺灣時間:2021/05/12 00:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張芸庭
研究生(外文):Yun-TingChang
論文名稱:利用X光繞射分析(CaxSr1-x)2SiO4固溶體其結晶結構與成分及溫度之間的關係
論文名稱(外文):Investigate the relationship between crystal structure of (CaxSr1-x)2SiO4 solid solutions as functions of composition and temperature using X-ray diffraction technique
指導教授:龔慧貞
指導教授(外文):Jennifer Kung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:地球科學系
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:87
中文關鍵詞:Ca2SiO4LarniteCalcio-olivine(CaxSr1-x)2SiO4固溶體X光繞射Rietveld method有序-無序調整型結構
外文關鍵詞:Ca2SiO4LarniteCalcio-olivine(CaxSr1-x)2SiO4solid solutionsX-ray diffractionRietveld methodorder-disordermodulated structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Ca2SiO4可在接觸變質岩中尋獲且早在18世紀中期已於工業應用中扮演重要角色,而(CaxSr1-x)2SiO4固溶體則可運用於螢光粉中。在Ca2SiO4中發現高溫相可被保存至室溫環境,其原因仍然有許多爭議。(CaxSr1-x)2SiO4固溶體系列之結晶結構在前人的研究當中僅有些許室溫之資訊,尚未完整的建立高溫下之相變行為。本研究藉由固態反應法合成樣品,將Ca2SiO4經過不同的熱處理後,再以X光繞射進行相鑑定,搭配第一原理計算的結果,探討Ca2SiO4在冷卻時其相變行為。利用實驗室X光繞射與同步輻射高溫、低溫X光繞射搭配Rietveld method精算方法,探討(CaxSr1-x)2SiO4固溶體之結晶結構與成分之間的關係以及相圖的建立。
實驗結果顯示Ca2SiO4最終產物會受到實驗過程中燒結溫度影響,若升溫至較低的溫度範圍(1173-1373 K),降溫後產物是以高溫相(β相)為主,若溫度較高(大於1373 K),則得到低溫相(γ相)為主的產物。第一原理計算結果顯示0 K及0 GPa的環境下,γ相能量相對於β相略低一些,因此推斷在室溫室壓環境下γ相為熱力學穩定相而β相為亞穩定,但兩相之間能量差相當小,推測兩相之間能障較高,且相變溫度僅約770 K,因此無法提供足夠動能進行相變,導致β相易被保存至室溫。當燒結溫度較高再進行降溫,會使得顆粒之間累積較多的應變,此應變將會使β相不穩定,繼續相變成γ相。另外,降溫速率的不同亦會影響產物中以兩相的比例。
在一系列固溶體(CaxSr1-x)2SiO4合成及X光繞射實驗中發現,當成分為x=0.1-0.9時,室溫皆為α’L相,固溶體從α’L相→α’H相之相變溫度隨著成分不同而變,皆比端成分還低,在成份x=0.2時會有最低的相變溫度。分析結果發現室溫下晶格參數隨著成分的變化會受到陽離子優選排列以及鍵長改變呈現非線行的變化。在進行擬合的過程中也發現,陽離子在兩個不同配位位置之分佈會影響(111)晶面之強度,因此(111)晶面也許是判斷有序-無序擬合好壞的依據。進一步在本研究當中也發現在α’L相中其衛星繞射面的波向量(q)主要會受到成分的影響而溫度為次要影響。
本研究試圖將實驗結果於野外應用上,期望判斷出露頭所經歷之熱歷史。也首次繪製出(CaxSr1-x)2SiO4高溫相圖,以及分析出調整型結構隨溫度、成分的變化。

Ca2SiO4 could be found in the contact metamorphic rocks and played an important role in the field of industry since the middle of 18th century. The solid solutions of composition (CaxSr1-x)2SiO4 were developed to be a material of phosphor. The high temperature phase of Ca2SiO4 can be retained at room temperature based on previous observations. However, the reason of that remains controversial. Only few studies focused on the solid solutions (CaxSr1-x)2SiO4 at room temperature. Furthermore, the phase transformation of solid solutions at high temperature was not investigated yet. The solid-state reaction was applied to synthesize samples in this study. To investigate the phase transformation of Ca2SiO4 upon cooling and the geological implication, the X-ray diffraction was used to determine the phase of final products after different heat treatment for Ca2SiO4. The first-principle calculation result was also taken to compare the energy between phases. To investigate the relationship between crystal structure of (CaxSr1-x)2SiO4 solid solutions and composition and establish the phase diagram, the in-house X-ray diffraction, high temperature and low temperature X-ray diffraction of synchrotron was used with Rietveld method.
The results showed that the crystal phases of final products were determined by the soaking temperature. If the sintering temperature was set within the lower temperature range (the stability field of α’L phase, 1173-1373 K), the dominated phase of products was high temperature phase (β); otherwise at higher temperature range (the stability field of α’H phase, higher than 1373 K), the dominated phase was low temperature phase (γ). The first-principle calculation results showed that the energy of the γ phase was slightly lower than that of the β phase at 0 K and 0 GPa. It indicated that the γ phase was a stable phase and the β phase was a metastable phase at ambient conditions. However, the energy difference of two phases was fairly small. This study suggested that the energy barrier between β and γ phases should be high. The transition temperature was about 770 K suggested by previous study. These might be the reason why the β phase could be retained at room temperature. More strains would be accumulated in the crystal when higher sintering temperature was applied. The accumulated strains in the crystal would make the β phase unstable and then induce them transform into the γ phase. The cooling rate might affect the ratio of mixtures of the β and γ phase.
The α’L phase would be the only crystal phase in the series of solid solutions with the composition (CaxSr1-x)2SiO4, x=0.1-0.9, which was synthesized, at room temperature. The temperature of phase transformation α’L→α’H in solid solutions was lower than end-members and would vary with compositions. There was a lowest transition temperature at x=0.2. The results showed that the variation of cell parameters was non-linear with increasing Ca2+ concentration and might be related to the state of order-disorder. The intensity of (111) diffraction peak would be affected by the distribution of cation in two occupancy sites with refinement. Therefore, the diffraction peak (111) might be an indicator of order-disorder refinement. It was further observed that the wave vector was majorly influenced by the composition, whereas impacted by the temperature less.
This study attempted to speculate the geological setting based on the experimental results and expected to determine the thermal history that the outcrop went through. It was the first time to provide the high temperature phase diagram and to investigate the correlation between modulated structure as the functions of temperature and composition.

摘要 I
Abstract II
誌謝 IV
Content V
List of table VII
List of figure VIII
Chapter 1 Introduction 1
1-1 Previous study 1
1-1-1 Ca2SiO4 1
1-1-1-1 Natural mineral of Ca2SiO4 2
1-1-1-2 Phase transformation of synthesized Ca2SiO4 upon cooling 3
1-1-2 Solid solutions of (CaxSr1-x)2SiO4 4
1-1-3 Modulated structure 5
1-2 Motivation and purpose 6
Chapter 2 Experimental method and analysis 13
2-1 Specimen synthesis 13
2-2 Phase determination and structure analysis 14
2-3 Deriving crystal structure from diffraction pattern: theory and programs 15
2-3-1 Theory 15
2-3-2 Rietveld method 16
2-3-3 Le Bail method 18
2-4 Program for data processing 19
2-5 Error of analysis 19
2-6 Starting models of crystal structures of Ca2SiO4 and Sr2SiO4 20
2-7 First-principle calculation 20
2-8 Spontaneous strain calculation 20
Chapter 3 Experimental results 29
3-1 Ca2SiO4 29
3-1-1 Products from different thermal histories 29
3-1-2 In-situ high temperature results 30
3-1-3 First-principle calculation results 31
3-1-4 Results of spontaneous strains from experimental data 31
3-2 (CaxSr1-x)2SiO4 32
3-2-1 Crystal structure of products phase at room temperature 32
3-2-2 Transition temperature of (CaxSr1-x)2SiO4 33
3-2-3 Wave vector value of (CaxSr1-x)2SiO4: functions of composition and temperature 34
Chapter 4 Discussion and conclusions 65
4-1 Transformation in Ca2SiO4 upon cooling and possible implication 65
4-1-1 Transition between β and α’L phase 65
4-1-2 Phase transition from α‘H to γ phase 66
4-1-3 Geological implication 67
4-2 Solid solutions of (CaxSr1-x)2SiO4 68
4-2-1 Phase diagram 68
4-2-2 Crystal structure refinement 69
4-2-2-1 Analysis of cell parameters 69
4-2-2-2 Order-disorder in (CaxSr1-x)2SiO4 70
4-2-2-3 Bond lengths of M1 and M2 sites in (CaxSr1-x)2SiO4 71
4-2-3 Analysis of modulated structure 72
4-3 Conclusions 73
4-4 Future work 74
References 84

Aizu, K. Determination of the state parameters and formulation of spontaneous strain for ferroelastics. Journal of the Physical Society of Japan, 28(3): 706-716 (1970).
Bredig, M. Isomorphism and allotrophy in compounds of the type A2XO4. The Journal of Physical Chemistry, 46(7): 747-764 (1942).
Bredig, M. Polymorphism of calcium orthosilicate. Journal of the American Ceramic Society, 33(6): 188-192 (1950).
Brown, W. L. Feldspars and Feldspathoids: Structures, Properties and Occurrences. Rennes: France Springer Science & Business Media (2013).
Carpenter, M. A., Salje, E. K. and Graeme-Barber, A. Spontaneous strain as a determinant of thermodynamic properties for phase transitions in minerals. European Journal of Mineralogy, 621-691 (1998).
Catti, M., Gazzoni, G. and Ivaldi, G. STRUCTURES OF TWINNED BETA-SR2SIO4 AND OF ALPHA'-SR1.9BA0.1SIO4. Acta Crystallographica Section C-Crystal Structure Communications 39(JAN): 29-34 (1983).
Catti, M., Gazzoni, G. and Ivaldi, G. ORDER-DISORDER IN THE ALPHA'-(CA,SR)2SIO4 SOLID-SOLUTION - A STRUCTURAL AND STATISTICAL-THERMODYNAMIC ANALYSIS. Acta Crystallographica Section B-Structural Science 40(DEC): 537-544 (1984).
Chen, M., Xia, Z., Molokeev, M. S. and Liu, Q. Structural Phase Transformation and Luminescent Properties of Ca2–x Sr x SiO4: Ce3+ Orthosilicate Phosphors. Inorganic Chemistry 54(23): 11369-11376 (2015).
Cullity, B. and Stock, S. Elements of X-ray diffraction (3rd edition). United states of America: Prentice Hall (2001).
Dušek, M., Petříček, V., Wunschel, M., Dinnebier, R. and Smaalen, S. v. Refinement of modulated structures against X-ray powder diffraction data with JANA2000. Journal of Applied Crystallography 34(3): 398-404 (2001).
Eysel, W. and Hahn, T. POLYMORPHISM AND SOLID SOLUTION OF CA2GEO4 AND CA2SIO4. Zeitschrift Fur Kristallographie Kristallgeometrie Kristallphysik Kristallchemie 131(4-5): 322-& (1970).
Garrity, K. F., Bennett, J. W., K. Rabe, M. and Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Computational Materials Science 81: 446-452 (2014).
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M. and Dabo, I. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter 21(39): 395502 (2009).
Hanic, F., Kamarad, J., Stracelsky, J. and Kapralik, I. The pT diagram of Ca2SiO4. British Ceramic. Transactions and journal 86(6): 194-198 (1987).
Il'Inets, A., Nevskii, N., Ilyukhin, V., Bikbau, M. Y. and Belov, N. Crystal structure of the alpha'-modification of dicalcium silicate Ca (Ca, Sr) SiO4. DOKLADY AKADEMII NAUK SSSR 267(3) : 641-644 (1982).
Itoh, H., Nishi, F., Kuribayashi, T. and Y. Kudoh Orientational ordering of three SiO4 tetrahedra in alpha '(L)- Ca1.5Sr0.5SiO4 that satisfies bond-valence requirements and avoids O-O repulsion. Journal of Mineralogical and Petrological Sciences 104(4): 234-240 (2009).
Jost, K., Ziemer, B. and Seydel, R. Redetermination of the structure of β-dicalcium silicate. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 33(6): 1696-1700 (1977).
Kim, Y. J., Nettleship, I. and Kriven, W. M. Phase transformations in dicalcium silicate: II, TEM studies of crystallography, microstructure, and mechanisms. Journal of the American Ceramic Society 75(9): 2407-2419 (1992).
Larson, A. C. and Von Dreele, R. B. Gsas. General Structure Analysis System. LANSCE, MS-H805, Los Alamos, New Mexico (1994).
Le Bail, A., Duroy, H. and Fourquet, J. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin 23(3): 447-452 (1988).
Lea, F. M. The chemistry of cement and concrete (3rd edition). Wokingham, Berkshire United Kingdom (1970).
Li, K., Shang, M., Lian, H. and Lin, J. Photoluminescence Properties of Efficient Blue-Emitting Phosphor α-Ca1. 65Sr0. 35SiO4: Ce3+: Color Tuning via the Substitutions of Si by Al/Ga/B. Inorganic Chemistry 54(16): 7992-8002 (2015).
McCusker, Von Dreele, L., Cox, R. D., Louër, D. and Scardi, P. Rietveld refinement guidelines. Journal of Applied Crystallography 32(1): 36-50 (1999).
Meinert, L. D. Skarns and skarn deposits. Geoscience Canada 19(4) (1992).
Midgley, C. The crystal structure of β dicalcium silicate. Acta Crystallographica 5(3): 307-312 (1952).
Moore, P. BRACELETS AND PINWHEELS-TOPOLOGICAL GEOMETRICAL APPROACH TO CALCIUM ORTHOSILICATE AND ALKALI SULFATE STRUCTURES. American Mineralogist 58(1-2): 32-42 (1973).
Mumme, W., Cranswick, L. and Chakoumakos, B. Rietveld crystal structure refinements from high temperature neutron powder diffraction data for the polymorphs of dicalcium silicate. NEUES JAHRBUCH FUR MINERALOGIE ABHANDLUNGEN 170: 171-188 (1996).
Niesel, K. and Thormann, P. Die stabilitätsbereiche der modifikationen des dicalciumsilikats. Tonindustrie-Zeitung 91: 362-369 (1967).
Perdew, J. P. and Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Physical Review B 23(10): 5048 (1981).
Regourd, M., Bigaré, M., Forest, J. and Guinier, A. Synthesis and crystallographic investigation of some belites. Proceedings of the 5th International Symposium on the Chemistry of Cement, Part I, Supplement Paper I-10, Tokyo (1968).
Remy, C., Andrault, D. and Madon, M. High-temperature, high-pressure X-ray investigation of dicalcium silicate. Journal of the American Ceramic Society 80(4): 851-860 (1997).
Remy, C., Reynard, B. and Madon, M. Raman spectroscopic investigations of dicalcium silicate: Polymorphs and high-temperature phase transformations. Journal of the American Ceramic Society 80(2): 413-423 (1997).
Rietveld, H. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography 2(2): 65-71 (1969).
Roy, D. M. Studies in the System CaO‐Al2O3‐SiO2H2O: III, New Data on the Polymorphism of Ca2SiO2 and Its Stability in the System CaO‐SiO2‐H2O. Journal of the American Ceramic Society 41(8): 293-299 (1958).
Saalfeld, H. X-RAY INVESTIGATION OF SINGLE-CRYSTALS OF BETA-CA2SIO4 (LARNITE) AT HIGH-TEMPERATURES. American Mineralogist 60(9-10): 824-827 (1975).
Shannon, R. T. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 32(5): 751-767 (1976).
Smith, D. K., Majumdar, A. and Ordway, F. The crystal structure of γ-dicalcium silicate. Acta Crystallographica 18(4): 787-795 (1956).
Smith, D. K., Majumdar, A. J. and Ordway, F. Re‐Examination of the Polymorphism of Dicalcium Silicate. Journal of the American Ceramic Society 44(8): 405-411 (1961).
Stenberg, L., Sellar, J. R. and Hyde, B. G. INCOMMENSURATELY MODULATED ALPHA'-SR2SIO4. Nature 320(6061): 428-429 (1986).
Tilley, C. E. On larnite (calcium orthosilicate, a new mineral) and its associated minerals from the limestone contact-zone of Scawt Hill, Co. Antrim. Miner. Mag. 22(125): 10 (1929).
Toby, B. H. and Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography 46(2): 544-549 (2013).
Trömel, G. Die Modifikationen des Kalziumorthosilikates Ca2SiO4. Naturwissenschaften 36(3): 88-88 (1949).
Tsurumi, T., Daimon, M., Kamiya, T. and Hirano, Y. Crystal structure and hydration of belite. Ceramic Transaction 40 (1994).
Udagawa, S., Urabe, K., Natsume, M. and Yano T. Refinement of the crystal structure of γ-Ca2SiO4. Cement and Concrete Research 10(2): 139-144 (1980).
Van Smaalen, S. Incommensurate crystallography, USA: Oxford University Press (2007).
Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B 41(11): 7892 (1990).
Withers, R. L. THE CHARACTERIZATION OF MODULATED STRUCTURES VIA THEIR DIFFRACTION PATTERNS. Progress in Crystal Growth and Characterization of Materials 18: 139-204 (1989).
Withers, R. L., Hyde, B. G. and Thompson, J. G. AN ELECTRON-DIFFRACTION STUDY OF THE INCOMMENSURATELY MODULATED ALPHA'-L-PHASE OF DISTRONTIUM SILICATE, SR2SIO4. Journal of Physics C-Solid State Physics 20(11): 1653-1669 (1987).
Zadov, A. E., Gazeev, V. M., Pertsev, N. N., Gurbanov, A. G., Yamnova, N. A., Gobechiya, E. R. and Chukanov, N. V. Discovery and investigation of a natural analog of calcio-olivine (gamma-Ca2SiO4). Doklady Earth Sciences 423(2): 1431-1434 (2008).
胡瀚陽 探討Sr2SiO4同分異構物形成與晶粒尺寸關係及其高溫行為. 成功大學地球科學系學位論文: 1-75 (2013)
簡文昱 探討鹼土族正矽酸鹽(Sr1-xBax)2SiO4固溶體晶體結構變化. 成功大學地球科學系學位論文: 1-102 (2015)


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔