跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 01:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊弘毅
研究生(外文):Hung-Yi Chuang
論文名稱:含芳香單元噻吩系低能隙共軛高分子的合成及太陽能電池之應用
論文名稱(外文):Synthesis and Characterization of Low Bandgap Conjugated Polymers Containing Thiophene Units and Their Applications in Polymer Solar Cells
指導教授:許聯崇
指導教授(外文):Lien-chung Hsu
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:120
中文關鍵詞:有機太陽能電池共軛高分子噻吩有機染料
外文關鍵詞:organic solar cellsconjugated polymerthiopheneorganic dye
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究的第一部分乃是由2,6-bis(trimethyltin)-4,8-dioctyloxybenzo[1,2-b;3,4-b]dithiophene和2,2'-dithiophene經由Stille聚合法,得到新型共聚高分子(PBDTDT),並對此高分子進行化學結構鑑定與分析,以及熱性質與光學性質之量測,其光學能隙為2.01 eV。將PBDTDT與PC61BM混摻並製作成異質接面高分子太陽能電池,在PBDTDT/PC61BM(1:3)之光伏元件經由測量後可獲得其能量轉換效率(PCE)為1.19 %,開路電壓(VOC)為0.60 V,電流密度(JSC)為3.72 mA/cm2。
本論文研究的第二部分乃是藉由Stille和Suzuki聚合法合成得到以dioctylfluorene-thiophene為電子予體之低能隙共軛高分子,其兩種高分子PFTDPP和PFTpBT,其主鏈上分別擁有兩個不同的電子受體結構,分別為diketopyrrolopyrrol (DPP)和benzothiadiazole (BT),其光學能隙分別為1.39 eV及1.80 eV。將PFTDPP和PFTpBT兩種高分子分別與PC61BM混摻並製作成異質接面高分子太陽能電池,可分別獲得能量轉換效率(PCE)為2.42 %和3.02 %。另一方面,本研究為了有效提升太陽能光電元件之光伏特性,便在主動層利用甲醇處理(Methanol treatment)模式來取代傳統的熱退火(Thermal annealing)模式,使能量轉換效率(PCE)獲得大幅的提升,其最終效率分別提升為4.25 %及4.20 %。
本論文研究的第三部分乃是藉由物理摻雜之方式,將有機染料2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,31H-phthalocyanine (OPc)摻入有機高分子太陽能電池中的主動層材料,希望能利用有機染料對太陽光吸收光性質與高分子主動層材料產生互補性之特性,以及電荷轉移的效應幫助提升光電流進而達到提升太陽能光電元件之效率。首先,先針對有機染料進行紫外光-可見光(UV -vis)光譜吸收分析、循環伏安量測分析(CV)、熱重分析儀(TGA)等各種基本特性進行鑑定分析。接著以不同濃度(1.63 wt%、3.22 wt%、4.76 wt%、6.30 wt%)的OPc染料與主動層(P3HT/PC61BM) 混摻製作有機高分子太陽能元件,並以太陽光模擬器量測之。其中,添加濃度為3.22 wt%所形成之元件有最佳的光伏特性,其開路電壓(VOC)為0.62 V,電流密度(JSC)為8.81 mA/cm2,填充因子(FF)為0.60,能量轉換效率(PCE)3.28 %。因此,在OPc染料的添加之下,整體元件效率獲得約19 %的提升。最後根據外部量子效率量測儀(EQE)量測結果,證實高分子太陽能電池效率的提升是來自於光電流的增加。

First, we have synthesized a new conjugated polymer PBDTDT containing 4,8-dioctyloxybenzo[1,2-b;3,4-b']di-thiophene and 2,2'-dithiophene via a Stille coupling reaction. The optical bandgap of PBDTDT is equal to the electrochemical bandgap (2.01 eV). In order to investigate its photovoltaic properties, polymer solar cell (PSC) devices based on PBDTDT were fabricated with a conventional device configuration of ITO/PEDOT:PSS/copolymer:PC61BM/LiF/Al under AM 1.5G illumination, 100 mW/cm2. The bulk heterojunction (BHJ) polymer solar cells were fabricated with the conjugated polymer as the electron donor and 6,6-phenyl-C61-butyric acid methyl ester (PC61BM) as the electron acceptor. The power conversion efficiency (PCE) of the solar cells based on PBDTDT/PC61BM (1:3) annealing at 110 oC for 20 min was 1.19 %, with a short-circuit current density (JSC) of 4.72 mA/cm2, an open-circuit voltage (VOC) of 0.6 V and a fill factor (FF) of 53.3 %.
Second, sensible design and synthesis of conjugating polymers is important to the development of polymer solar cells (PSCs). In this work, we synthesized two dioctylfluorene-thiophene based conjugated copolymers via Stille and Suzuki polymerization reactions, PFTDPP and PFTpBT, having different acceptor groups on the backbone. The optical bandgaps of PFTDPP and PFTpBT are 1.39 eV and 1.80 eV, respectively. As a result, the photovoltaic properties of the copolymers blended with 6,6-phenyl-C61-butyric acid methyl ester (PC61BM) as an electron acceptor were obtained. The polymer solar cell (PSC) based on a conventional device configuration ITO/PEDOT:PSS/copolymers:PC61BM/LiF/Al showed a power conversion efficiency (PCE) of 2.42 % and 3.02 % for PFTDPP and PFTpBT, respectively. A simple method, methanol treatment, was introduced to further optimize device performance. The best PCEs could reach 4.25 % and 4.20 % after methanol treatment under the AM 1.5G illumination with an intensity of 100 mW/cm2 from a solar simulator.
Third, we have enhanced the power conversion efficiency of PSCs by physically doping an organic dye into the active layer of the cells. The organic dye has a complementary absorption wavelength with regard to the polymer active layer and energy transfer effect, thus increasing the photovoltaic current of PSCs. We chose 2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,31H-phthalocyanine (OPc) as an organic dye and analyzed OPc’s characteristics with cyclic voltammetry (CV), UV-Vis spectrometry and thermogravimetry analysis (TGA). The PSCs were fabricated by blending the organic dye into the active layer (P3HT/PC61BM) at different concentrations (1.63 wt%, 3.22 wt%, 4.76 wt%, and 6.30 wt%). The doped devices showed a 19% increase in the PCE. It was proved that this increase in efficiency was due to the increase in photovoltaic current, based on the measurement of external quantum efficiency (EQE).

摘要 I
ABSTRACT III
誌謝 V
CONTENTS VII
Table of contents XII
Figure of contents XIII
Scheme of contents XVIII
CHAPTER 1. INTRODUCTION 1
1-1. Background 1
1-2. Development of polymer solar cells 3
1-3. Research motivation 6
CHAPTER 2. LITERATURE REVIEW AND PRINCIPLE 8
2-1. π-Conjugated polymers 8
2-2. Working principles of polymer solar cells 11
2-3. Critical parameters for solar cell efficiency 14
2-3-1. Open circuit voltage (VOC) 14
2-3-2. Short circuit current (ISC) 15
2-3-3. Fill factor (FF) 16
2-3-4. Power conversion efficiency (PCE, η) 16
2-4. Air mass 17
2-5. Device architectures for polymer solar cells 20
2-5-1. Single-layer structure 20
2-5-2. Bilayer structure 21
2-5-3. Bulk heterojunction structure (BHJ) 22
CHAPTER 3. EXPERIMENTAL METHODS 24
3-1. Materials 24
3-2. Experimental instruments 27
3-3. Synthesis of a new conjugated polymer containing benzodithiophene for polymer solar cells 28
3-3-1. Synthesis of monomer 28
3-3-1-1. Thiophene-3-carbonyl chloride (1) 28
3-3-1-2. N,N-Diethylthiophene-3-carboxamide (2) 28
3-3-1-3. 4,8-Dihydrobenzo[1,2-b:4,5-b′]dithiophen-4,8-dione (3) 29
3-3-1-4. 4,8-Dioctyloxybenzo[1,2-b;3,4-b]dithiophene (4) 29
3-3-1-5. 2,6-Bis(trimethyltin)-4,8-dioctyloxybenzo[1,2-b;3,4b] dithiophene (M1) 30
3-3-2. Synthesis of the polymer 31
3-3-2-1. Synthesis of PBDTDT using Stille coupling reaction 31
3-4. Dioctylfluorene-thiophene based conjugated copolymers for bulk heterojunction solar cells and enhanced power conversion efficiency via methanol treatment 32
3-4-1. Synthesis of the monomer 32
3-4-1-1. 3,6-Dithiophene-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (1) 32
3-4-1-2. 2,5-Diethylhexyl-3,6-dithiophen-2-yl-pyrrolo[3,4-c]pyrrole-1,4-dione (2) 32
3-4-1-3. 2,5-Diethylhexyl-3,6-bis(5-bromothiophen-2-yl)pyrrolo[3,4-c]-pyrrole-1,4-dione (M2) 33
3-4-1-4. 4,7-Di-2-thienyl-2,1,3-benzothiadiazole (3) 34
3-4-1-5. 4,7-Bis(5-bromo-2-thienyl)-2,1,3-benzothiadiazole (M3) 35
3-4-2. Synthesis of the polymer 36
3-4-2-1. Synthesis of PFTDPP using the Stille coupling reaction 36
3-4-2-2. Synthesis of PFTpBT using the Suzuki coupling reaction 37
3-5. Characterization methods 39
3-5-1. Fourier transform infrared (FT-IR) spectrometer 39
3-5-2. Nuclear magnetic resonance (NMR) spectrometer 40
3-5-3. Gel permeation chromatography (GPC) 40
3-5-4. Thermogravimetric analysis (TGA) 42
3-5-5. Differential scanning calorimetry (DSC) 42
3-5-6. Cyclic voltammetry (CV) 43
3-5-7. Ultraviolet-visible absorption (UV-Vis) spectrometer 44
3-5-8. X-ray diffraction (XRD) analysis 45
3-5-9. Solar simulator 47
3-5-10. External quantum efficiency (EQE) 47
3-5-11. Space-charge-limited current (SCLC) 48
3-6. Device fabrication 51
CHAPTER 4. RESULTS AND DISCUSSION 56
4-1. Synthesis of a new conjugated polymer containing benzodithiophene unit for bulk heterojunction solar cells 56
4-1-1. Synthesis and characterization of the monomer 56
4-1-2. Synthesis and characterization of the polymer 59
4-1-3. Thermal properties analysis 62
4-1-4. Optical properties analysis 62
4-1-5. Electrochemical properties analysis 65
4-1-6. Photovoltaic performances of the polymer solar cells 66
4-1-7. Hole mobility 69
4-2. Dioctylfluorene-thiophene based conjugated copolymers for bulk heterojunction solar cells and enhanced power conversion efficiency via methanol treatment 70
4-2-1. Synthesis and characterization of the monomer 70
4-2-2. Synthesis and characterization of polymers 74
4-2-3. Thermal properties analysis 77
4-2-4. Optical properties analysis 79
4-2-5. Electrochemical properties analysis 82
4-2-6. Photovoltaic performances of the polymer solar cells 84
4-2-7. Hole mobility 88
4-3. Efficiency enhancement of P3HT:PC61BM bulk heterojunction solar cells by doping with a small molecule dye 90
4-3-1. Electrochemical properties analysis 90
4-3-2. Optical properties analysis 93
4-3-3. Photovoltaic performances of the polymer solar cells 96
4-3-4. X-ray diffraction analysis 100
4-3-5. Optical micrograph analysis 100
CHAPTER 5. CONCLUSIONS 102
CHAPTER 6. REFERENCES 104
自述 116
著作列表 117

[1] British petroleum, BP Statistical Review of World Energy, 2016.
[2] E. Ahlonsou, Y. Ding, D. Schimel, Natural Forcing of the Climate System, 2007.
[3] http://www.nrel.gov/ncpv/, 2016.
[4] D. M. Chapin, C. S. Fuller, G. L. Pearson, A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, Journal of Applied Physics, 25, 676, 1954.
[5] C. W. Tang, Two‐Layer Organic Photovoltaic Cell, Applied Physics Letters, 48, 183, 1986.
[6] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene, Science, 258, 1474-1476, 1992.
[7] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science, 270, 1789-1791, 1995.
[8] Pavel Schilinsky, Christoph Waldauf, Recombination and Loss Analysis in Polythiophene Based Bulk Heterojunction Photodetectors, Applied Physics Letters, 81, 3885-3887, 2002.
[9] Franz Padinger, Roman S. Rittberger, Niyazi S. Sariciftci, Effects of Postproduction Treatment on Plastic Solar Cells, Advanced Functional Materials, 13, 85-88, 2003.
[10] Hsueh-Chung Liao, Cheng-Si Tsao, Tsung-Han Lin, Chih-Min Chuang, Charn-Ying Chen, U-Ser Jeng, Chiu-Hun Su, Yang-Fang Chen, Wei-Fang Su, Quantitative Nanoorganized Structural Evolution for a High Efficiency Bulk Heterojunction Polymer Solar Cell, Journal of the American Chemical Society, 133, 13064-13073, 2011.
[11] Markus C. Scharber, David Mühlbacher, Markus Koppe, Patrick Denk, Christoph Waldauf, Alan J. Heeger, Christoph J. Brabec, Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency, Advanced Materials, 18, 789-794, 2006.
[12] Youngkyoo Kim, Stelios A. Choulis, Jenny Nelson, Donal D. C. Bradley, Device Annealing Effect in Organic Solar Cells with Blends of Regioregular Poly(3-hexylthiophene) and Soluble Fullerene Applied Physics Letters, 86, 063502, 2005.
[13] Junfeng Yan, Brian R. Saunders, Third-Generation Solar Cells: A Review and Comparison of Polymer:Fullerene, Hybrid Polymer and Perovskite Solar Cells, RSC Advances, 4, 43286-43314, 2014.
[14] Minh Trung Dang, Lionel Hirsch, Guillaume Wantz, P3HT:PCBM, Best Seller in Polymer Photovoltaic Reasearch, Advanced Materials, 23, 3597-3602, 2011.
[15] Julien Warnan, Clément Cabanetos, Abdulrahman El Labban, Michael Ryan Hansen, Christopher Tassone, Michael F. Toney, Pierre M. Beaujuge, Ordering Effects in Benzo[1,2-b:4,5-b']difuran-thieno[3,4-c]pyrrole-4,6-dione Polymers with )7% Solar Cell Efficiency, Advanced Materials, 26, 4357-4362, 2014.
[16] John R. Tumbleston, Andrew C. Stuart, Eliot Gann, Wei You, Harald Ade, Fluorinated Polymer Yields High Organic Solar Cell Performance for a Wide Range of Morphologies, Advanced Functional Materials, 23, 3463-3470, 2013.
[17] Lixin Wang, Dongdong Cai, Qingdong Zheng, Changquan Tang, Shan-Ci Chen, Zhigang Yin, Low Band Gap Polymers Incorporating a Dicarboxylic Imide-Derived Acceptor Moiety for Efficient Polymer Solar Cells, ACS Macro Letters, 2, 605-608, 2013.
[18] Ta-Ya Chu, Salima Alem, Sai-Wing Tsang, Shing-Chi Tse, Salem Wakim, Morphology Control in Polycarbazole Based Bulk Heterojunction Solar Cells and Its Impact on Device Performance, Applied Physics Letters, 98, 253301, 2011.
[19] Zhicai He, Chengmei Zhong, Shijian Su, Miao Xu, Hongbin Wu, Yong Cao, Enhanced Power-Conversion Efficiency in Polymer Solar Cells Using an Inverted Device Structure, Nature Photonics, 6, 591-595, 2012.
[20] M.C. Scharber, N.S. Sariciftci, Efficiency of Bulk-Heterojunction Organic Solar Cells, Progress in Polymer Science, 38, 1929-1940, 2013.
[21] Hui Joon Park, Myung-Gyu Kang, Se Hyun Ahn, L. Jay Guo, A Facile Route to Polymer Solar Cells with Optimum Morphology Readily Applicable to a Roll-To-Roll Process without Sacrificing High Device Performances, Advanced Materials, 22, E247-E253, 2010.
[22] Linyi Bian, Enwei Zhu, Jian Tang, Weihua Tang, Fujun Zhang, Recent Progress in the Design of Nrrow Bndgap Conjugated Polymers for High-Efficiency Organic Solar Cells, Progress in Polymer Science, 37, 1292-1331, 2012.
[23] Petr P. Khlyabich, Beate Burkhart, Andrey E. Rudenko, Barry C. Thompson, Optimization and Simplification of Polymer-Fullerene Solar Cells Through Polymer and Active Layer Design, Polymer, 54, 5267-5298, 2013.
[24] Huaxing Zhou, Liqiang Yang, Wei You, Rational Design of High Performance Conjugated Polymers for Organic Solar Cells, Macromolecules, 45, 607-632, 2012.
[25] Huiqiong Zhou, Yuan Zhang, Jason Seifter, Samuel D. Collins, Chan Luo, Guillermo C. Bazan, Thuc-Quyen Nguyen, Alan J. Heeger, High-efficiency Polymer Solar Cells Enhanced by Solvent Treatment, Advanced Materials, 25, 1646-1652, 2013.
[26] Xiaofeng Liu, Wen Wen, Guillermo C. Bazan, Post-deposition Treatment of an Arylated-carbazole Conjugated Polymer for Solar Cell Fabrication, Advanced Materials, 24, 4505-4510, 2012.
[27] Kun Wang, Zhi-Guo Zhang, Qiang Fu, Yongfang Li, Synthesis and Photovoltaic Properties of a D-A Copolymer Based on the 2,3-Di(5-hexylthiophen-2-yl)quinoxaline Acceptor Unit, Macromolecular Chemistry and Physics, 215, 597-603, 2014.
[28] Ji-Hoon Kim, Minjung Lee, Hoichang Yang, Do-Hoon Hwang, A High Molecular Weight Triisopropylsilylethynyl (TIPS)-benzodithiophene and Diketopyrrolopyrrole-based Copolymer for High Performance Organic Photovoltaic Cells, Journal of Materials Chemistry A, 2, 6348-6352, 2014.
[29] Hsieh-Chih Chen, Ying-Hsiao Chen, Chi-Chang Liu, Yun-Chen Chien, Shang-Wei Chou, Pi-Tai Chou, Prominent Short-Circuit Currents of Fluorinated Quinoxaline-Based Copolymer Solar Cells with a Power Conversion Efficiency of 8.0%, Chem Mater, 24, 4766-4772, 2012.
[30] Shugang Li, Zhongcheng Yuan, Jianyu Yuan, Ping Deng, Qing Zhang, Baoquan Sun, An Expanded Isoindigo Unit as a New Building Block for a Conjugated Polymer Leading to High-Performance Solar Cells, Journal of Materials Chemistry A, 2, 5427-5433, 2014.
[31] Jea Uk Lee, Young Do Kim, Jea Woong Jo, Jae Pil Kim, Won Ho Jo, Efficiency Enhancement of P3HT/PCBM Bulk Heterojunction Solar Cells by Attaching Zinc Phthalocyanine to the Chain-end of P3HT, Journal of Materials Chemistry, 21, 17209-17218, 2011.
[32] Satoshi Honda, Hideo Ohkita, Hiroaki Bentena, Shinzaburo Ito, Multi-Colored Dye Sensitization of Polymer/Fullerene Bulk Heterojunction Solar Cells, Chemical communications, 46, 6596-6598, 2010.
[33] A. Ltaief, R. Ben Chaaˆbane, A. Bouazizi, J. Davenas, Photovoltaic Properties of Bulk Heterojunction Solar Cells with Improved Spectral Coverage, Materials Science and Engineering: C, 26, 344-347, 2006.
[34] Hideki Shirakawa, Edwin J. Louis, Alan G. Macdiarmid, Chwan K. Chiang, Alan J. Heeger, Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x, Journal of the Chemical Society, Chemical Communications, 578-580, 1977.
[35] Hideki Shirakawa, The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture), Angewandte Chemie International Edition, 40, 2001.
[36] Alan G. MacDiarmid, Synthetic Metals: A Novel Role for Organic Polymers (Nobel Lecture), Angewandte Chemie International Edition, 40, 2001.
[37] Alan J. Heeger, Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture), Angewandte Chemie International Edition, 40, 2001.
[38] Klaus Müllen, John R Reynolds, Toshio Masuda, Conjugated Polymers : A Practical Guide to Synthesis, The Royal Society of Chemistry, 2014.
[39] Jyongsik Jang, Conducting Polymer Nanomaterials and Their Applications, Advances in Polymer Sciencepp. 189-252, 2006.
[40] Nurdan Demirci Sankır, Flexible Electronics: Materials and Device Fabrication, Faculty of Virginia Polytechnic Institute and State University 2005
[41] Ayyappanpillai Ajayaghosh, Donor–Acceptor Type Low Band Gap Polymers: Polysquaraines and Related Systems, Chemical Society Reviews, 32, 181-191, 2003.
[42] Christoph J. Brabec, N. Serdar Sariciftci, Jan C. Hummelen, Plastic Solar Cells, Advanced Functional Materials, 11, 15-26, 2001.
[43] Jean-Michel Nunzi, Organic Photovoltaic Materials and Devices: PHOTONIQUE MOLECULAIRE: MATÉRIAUX, PHYSIQUE ET COMPOSANTS MOLECULAR PHOTONICS: MATERIALS, PHYSICS AND DEVICES, Comptes Rendus. Physique 3, 523-542, 2002.
[44] Barry C. Thompson, Jean M. J. Fréchet, Polymer-Fullerene Composite Solar Cells, Angewandte Chemie, 47, 58-77, 2008.
[45] Janke J. Dittmer, Elisabeth A. Marseglia, Richard H. Friend, Electron Trapping in Dye/Polymer Blend Photovoltaic Cells, Advanced Materials, 12, 1270-1274, 2000.
[46] R. Koeppe, N. S. Sariciftci, Photoinduced Charge and Energy Transfer Involving Fullerene Derivatives Photochemical & Photobiological Sciences, 11, 1122-1131, 2006.
[47] M. A. Fox, M. Chanon, Photoinduced Electron Transfer, Elsevier, 1988.
[48] Yen-Ju Cheng, Sheng-Hsiung Yang, Chain-Shu Hsu, Synthesis of Conjugated Polymers for Organic Solar Cell Applications, Chemical reviews, 109, 2009.
[49] Christoph J. Brabec, Antonio Cravino, Dieter Meissner, N. Serdar Sariciftci, Thomas Fromherz, Minze T. Rispens, Luis Sanchez, Jan C. Hummelen, Origin of the Open Circuit Voltage of Plastic Solar Cells, Advanced Functional Materials, 11, 374-380, 2001.
[50] Serap Günes, Helmut Neugebauer, Niyazi Serdar Sariciftci, Conjugated Polymer-Based Organic Solar Cells, Chemical reviews, 107, 1324-1338, 2007.
[51] http://pveducation.org/.
[52] http://solarwiki.ucdavis.edu/.
[53] http://www.newport.com/.
[54] Martin A. Green, Solar Cells: Operating Principles, Technology, and System Applications, Englewood Cliffs, NJ, Prentice-Hall, Inc., 1982.
[55] Christoph Winder, Niyazi Serdar Sariciftci, Low Bandgap Polymers for Photon Harvesting in Bulk Heterojunction Solar Cells, Journal of Materials Chemistry, 14, 1077-1086, 2004.
[56] Harald Hoppe, Niyazi Serdar Sariciftci, Organic Solar Cells: An overview, Journal of Materials Research, 19, 1924-1945, 2004.
[57] Jung-Feng Lee, Synthesis and Characterization of Polyfluorene and Polycarbazole Copolymers for Polymer-Light-Emitting-Diodes and Polymer Solar Cells Applications, The Degree of Doctor of Philosophy, Department of Materials Science and Engineering, National Cheng-Kung University, 2011
[58] Amal K. Ghosh, Tom Feng, Merocyanine Organic Solar Cells Journal of Applied Physics, 49, 5982, 1978.
[59] R. N. Marks, J. J. M. Halls, D. D. C. Bradley, R. H. Friend, A. B. Holmes, The Photovoltaic Response in Poly(p-phenylene vinylene) Thin-Film Devices, Journal of Physics: Condensed Matter, 6, 1379-1394, 1994.
[60] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, C60: Buckminsterfullerene, Nature, 318, 162-163, 1985.
[61] J. J. M. Halls, K. Pichler, R. H. Friend, Exciton Diffusion and Dissociation in a Poly(p-phenylenevinylene)/C60 Heterojunction Photovoltaic Cell, Applied Physics Letters, 68, 3120-3122, 1996.
[62] G. Yu, K. Pakbaz, A. J. Heeger, Semiconducting Polymer Diodes: Large Size, Low Cost Photodetectors with Excellent Visible‐Ultraviolet Sensitivity Applied Physics Letters, 64, 3422, 1994.
[63] Fred Wudl, The Chemical Properties of Buckminsterfullerene (C60) and the Birth and Infancy of Fulleroids, Accounts of Chemical Research 25, 157-161, 1992.
[64] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science, 270, 1789-1791, 1995.
[65] John E McMurry, Organic Chemistry, Sixth ed., 2004.
[66] Douglas A. Skoog, F. James Holler, Stanley R. Crouch, Priciple of Instrumental Analysis, Sixth ed., 2007.
[67] https://en.wikipedia.org/wiki/Nuclear_magnetic_resonance.
[68] Cheng-Hsun Shen, Synthesis and Properties of Medium to High Temperature Proton Exchange Membrane for Fuel Cell Applicationapplication, The Degree of Doctor of Philosophy, Department of Materials Science and Engineering, National Cheng-Kung University, 2013.
[69] André M. Striegel, Wallace W. Yau, Joseph J. Kirkland, Donald D. Bly, Modern Size-Exclusion Liquid Chromatography: Practice of Gel Permeation and Gel Filtration Chromatography, Second ed., 2009.
[70] L. H. Sperling, Introduction to Physical Polymer Science, Fourth ed., 2006.
[71] Basil Shadfan, Andrew R. Barron, Differential Scanning Calorimetry (DSC), Physical Methods in Chemistry and Nano Science, 2015.
[72] Lal Dhar Singh Yadav, Organic Spectroscopy, 2005.
[73] RSC advancing the chemical sciences, Ultraviolet-Visible Spectroscopy (UV), Royal Society of Chemistry, 2009.
[74] Zhebo Chen, Huyen N. Dinh, Eric Miller, Photoelectrochemical Water Splitting-Standards, Experimental Methods, and Protocols, Springer, 2013.
[75] P. N. Murgatroyd, Theory of Space-Charge-Limited Current Enhanced by Frenkel Effect, Journal of Physics D: Applied Physics, 3, 151-156, 1970.
[76] Gabriel González, Quantum Theory of Space Charge Limited Current in Solids, Journal of Applied Physics, 117, 084306, 2015.
[77] Kwok K. Ng, Complete Guide to Semiconductor Devices, Second ed., John Wiley & Sons, Inc., 2002.
[78] P. W. M. Blom, M. J. M. de Jong, M. G. van Munster, Electric-Field and Temperature Dependence of the Hole Mobility in Poly(p-phenylene vinylene), Physical Review B, 55, R656-R659, 1997.
[79] Dmitry Poplavskyy, Wencheng Su, Franky So, Bipolar Charge Transport, Injection, and Trapping Studies in a Model Green-Emitting Polyfluorene Copolymer, Journal of Applied Physics, 98, 014501, 2005.
[80] Hualong Pan, Yuning Li, Yiliang Wu, Ping Liu, Beng S. Ong, Shiping Zhu, Gu Xu, Low-Temperature, Solution-Processed, High-Mobility Polymer Semiconductors for Thin-Film Transistors, Journal of the American Chemical Society, 129, 4112-4113, 2007.
[81] Jianhui Hou, Mi-Hyae Park, Shaoqing Zhang, Yan Yao, Li-Min Chen, Juo-Hao Li, Yang Yang, Bandgap and Molecular Energy Level Control of Conjugated Polymer Photovoltaic Materials Based on Benzo[1,2-b4,5-b′]dithiophene, Macromolecules, 41, 6012-6018, 2008.
[82] Haifeng Wang, Qinqin Shi, Yuze Lin, Haijun Fan, Pei Cheng, Xiaowei Zhan, Yongfang Li, Daoben Zhu, Conjugated Polymers Based on a New Building Block: Dithienophthalimide, Macromolecules, 44, 4213-4221, 2011.
[83] Yao Liu, Yunqi Liu, Xiaowei Zhan, High-Mobility Conjugated Polymers Based on Fused-Thiophene Building Blocks, Macromolecular Chemistry and Physics, 212, 428-443, 2011.
[84] Takakazu Yamamoto, Takeshi Kamijoh, Isao Wataru, Preparation and Spectroscopic Data of 13C-Labeled Polythiophenes and Corresponding Iodide Monomers, Journal of Polymer Science: Part A: Polymer Chemistry, 38, 1642-1646, 2000.
[85] Kouichi Shiraishi, Takakazu Yamamoto, New p-Conjugated Polymers Constituted of Dialkoxybenzodithiophene Units Synthesis and Electronic Properties, Synthetic Metals, 130, 139-147, 2002.
[86] Barry C Thompson, Jean M J Fréchet, Polymer–Fullerene Composite Solar Cells, Angewandte Chemie International Edition, 47, 58-77, 2008.
[87] Salem Wakim, Badrou‐Réda Aïch, Ye Tao, Mario Leclerc, Charge Transport, Photovoltaic, and Thermoelectric Properties of Poly(2,7‐Carbazole) and Poly(Indolo[3,2‐b]Carbazole) Derivatives, Polymer Reviews, 48, 432-462, 2008.
[88] H. Bronstein, Z. Chen, R. S. Ashraf, W. Zhang, J. Du, J. R. Durrant, P. S. Tuladhar, K. Song, S. E. Watkins, Y. Geerts, M. M. Wienk, R. A. Janssen, T. Anthopoulos, H. Sirringhaus, M. Heeney, I. McCulloch, Thieno[3,2-b]thiophene-Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices, Journal of the American Chemical Society, 133, 3272-3275, 2011.
[89] Arnold Bernarte Tamayo, Mananya Tantiwiwat, Bright Walker, Thuc-Quyen Nguyen, Design, Synthesis, and Self-assembly of Oligothiophene Derivatives with a Diketopyrrolopyrrole Core, The Journal of Physical Chemistry C, 112, 15543-15552, 2008.
[90] I. Meager, R. S. Ashraf, S. Mollinger, B. C. Schroeder, H. Bronstein, D. Beatrup, M. S. Vezie, T. Kirchartz, A. Salleo, J. Nelson, I. McCulloch, Photocurrent Enhancement from Diketopyrrolopyrrole Polymer Solar Cells through Alkyl-chain Branching Point Manipulation, Journal of the American Chemical Society, 135, 11537-11540, 2013.
[91] N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G. Durocher, Y. Tao, M. Leclerc, Toward a Rational Design of Poly(2,7-carbazole) Derivatives for Solar Cells, Journal of the American Chemical Society, 130, 732-742, 2008.
[92] Jianhui Hou, Mi-Hyae Park, Shaoqing Zhang, Yan Yao, Li-Min Chen, Juo-Hao Li, Yang Yang, Bandgap and Molecular Energy Level Control of Conjugated Polymer Photovoltaic Materials Based on Benzo[1,2-b4,5-b′]dithiophene, Macromolecules, 41, 6012-6018, 2008.
[93] Dariusz Kotowski, Silvia Luzzati, Gabriele Bianchi, Anna Calabrese, Andrea Pellegrino, Riccardo Po, Giuliana Schimperna, Alessandra Tacca, Double Acceptor D–A Copolymers Containing Benzotriazole and Benzothiadiazole Units: Chemical Tailoring Towards Efficient Photovoltaic Properties, Journal of Materials Chemistry A, 1, 10736-10743, 2013.
[94] Derong Cao, Qilin Liu, Wenjing Zeng, Shaohu Han, Junbiao Peng, Shouping Liu, Synthesis and Characterization of Novel Red-Emitting Alternating Copolymers Based on Fluorene and Diketopyrrolopyrrole Derivatives, Journal of Polymer Science Part A: Polymer Chemistry, 44, 2395-2405, 2006.
[95] Po-I Lee, Steve Lien-Chung Hsu, Jung-Feng Lee, Efficient Bulk Heterojunction Solar Cells with Copolymers Based on Fluorene Dithienylbenzothiadiazole,and Thiophene Derivatives, Solar Energy Materials and Solar Cells, 95, 2011.
[96] Erjun Zhou, Junzi Cong, Keisuke Tajima, Kazuhito Hashimoto, Synthesis and Photovoltaic Properties of Donor−Acceptor Copolymers Based on 5,8-Dithien-2-yl-2,3-diphenylquinoxaline, Chemistry of Materials, 22, 4890-4895, 2010.
[97] Yong Zhang, Steven K. Hau, Hin-Lap Yip, Ying Sun, Orb Acton, Alex K. Y. Jen, Efficient Polymer Solar Cells Based on the Copolymers of Benzodithiophene and Thienopyrroledione, Chemistry of Materials, 22, 2696-2698, 2010.
[98] Lijun Huo, Chang He, Minfang Han, Erjun Zhou, Yongfang Li, Alternating Copolymers of Electron-Rich Arylamine and Electron-Deficient 2,1,3-Benzothiadiazole: Synthesis, Characterization and Photovoltaic Properties, Journal of Polymer Science Part A: Polymer Chemistry, 45, 3861-3871, 2007.
[99] Qing Wang, Yan Zhou, Hua Zheng, Jian Shi, Chunzeng Li, Chanmin Q. Su, Lei Wang, Chan Luo, Diangang Hu, Jian Pei, Jian Wang, Junbiao Peng, Yong Cao, Modifying Organic/Metal Interface via Solvent Treatment to Improve Electron Injection in Organic Light Emitting Diodes, Organic Electronics, 12, 1858-1863, 2011.
[100] Christopher R. McNeill, Agnese Abrusci, Jana Zaumseil, Richard Wilson, Mary J. McKiernan, Jeremy H. Burroughes, Jonathan J. M. Halls, Neil C. Greenham, Richard H. Friend, Dual Electron Donor/Electron Acceptor Character of a Conjugated Polymer in Efficient Photovoltaic Diodes, Applied Physics Letters, 90, 193506, 2007.
[101] Hairong Li, Timothy J. Jensen, Frank R. Fronczek, M. Graça H. Vicente, Syntheses and Properties of a Series of Cationic Water-Soluble Phthalocyanines, Journal of Medicinal Chemistry, 51, 502-511, 2008.
[102] Satoshi Honda, Takahiro Nogami, Hideo Ohkita, Hiroaki Benten, Shinzaburo Ito, Improvement of the Light-Harvesting Efficiency in Polymer/Fullerene Bulk Heterojunction Solar Cells by Interfacial Dye Modification, ACS Appled Materials & Interfaces, 1, 804-810, 2009.
[103] Wanli Ma, Cuiying Yang, Xiong Gong, Kwanghee Lee, Alan J. Heeger, Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology, Advanced Functional Materials, 15, 1617-1622, 2005.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊