(3.226.72.118) 您好!臺灣時間:2021/05/13 08:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:黃蔚翔
研究生(外文):Wei-HsiangHuang
論文名稱:Ag-xPd合金線與鋁打線接合經不同測試環境界面反應探討
論文名稱(外文):The interfacial reaction of Ag-xPd wire bonding on Al pad under various testing conditions
指導教授:林光隆
指導教授(外文):kwang-Lung Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:96
中文關鍵詞:銀鈀合金線介金屬化合物打線接合可靠度測試
外文關鍵詞:Ag-Pd Alloy WireWire BondingReliability TestIntermetallic Compound
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
由於市場與產品功能需求,工業界正逐漸發展使用銀合金線替代部份以往打線接合製程(Wire Bonding)使用之金線與銅線,相關研究指出銀鈀合金線可靠度壽命佳,本研究試著探討銀鈀合金線與鋁打線接合經不同可靠度測試環境界面反應行為。
本研究分析不同鈀含量之銀鈀合金線在打線初成階段(As-bonded)、時效以及經過壓力鍋測試(Pressure Cook Test) 、溫度循環測試(Temperature Cycling Test)和無偏壓高加速溫濕試驗(un-bias Highly Accelerated Temperature and Humidity Stress Test)不同測試環境下界面反應行為。研究過程觀察不同測試下銀鈀合金線接點形貌,比對結果顯示當鈀含量大於3.5%時,隨著鈀含量增加介金屬化合物成長較快。介金屬化合物藉由電子顯微鏡及能量分散能譜(SEM-EDX)分析其組成,分析結果顯示當合金線中鈀含量較高時,接點介面生成之介金屬化合物中鋁含量較低之(Ag,Pd)2Al。經過壓力鍋測試,界面受腐蝕影響且在鋁墊上方形成富銀相(Ag,Pd)3Al;溫度循環測試中,鈀含量較低其接點易形成(Ag,Pd)3Al2,該介金屬化合物熱膨脹係數與銀鈀合金線差異較大,易於界面形成裂縫;無偏壓高加速溫濕測試中,受到濕氣影響程度較壓力鍋測試小,且當鈀含量較高,其接點界面較無腐蝕行為發生。

The industry is trying to replace part of gold and copper wire bond with silver wires. Ag-Pd alloy wire was reported as a potential candidate because of its high reliability. This study investigated the interfacial reaction of Ag-xPd wire bonding on Al pad under various testing conditions.
Aging, pressure cook test (PCT), temperature cycling test (TCT) and un-biased accelerated and humidity stress test (u-HAST) were applied on As-bonded AgxPd(1~6%) wire bonding samples to study the interfacial reaction. The SEM images of wire bond under different test conditions were analyzed. The results indicated that the growth of the intermetallic compound (IMC) was enhanced when the content of Pd is more than 3.5%. The composition of IMC was analyzed by SEM-EDX. It shows that the contents of Al in IMC decrease when the Pd content of alloy wire increases. An increase in the content of Pd in alloy wire leads to promote the formation of (Ag,Pd)2Al rather than (Ag,Pd)3Al2. After PCT test, the corrosion behavior occurred at the interface and Ag-rich IMC (Ag,Pd)3Al formed above the Al-pad. Under TCT test, the (Ag,Pd)3Al2 formed at the interface. The (Ag,Pd)3Al2 exhibits larger difference the coefficient of thermal expansion (CTE) with alloy wire. It tends to induce the crack formation during TCT test. The increasing Pd content inhibits the corrosion of the wire bond under u-HAST test.
中文摘要 I
Extended Abstract II
誌謝 XI
總目錄 XIII
表目錄 XVI
圖目錄 XVII
第壹章 簡介 1
1-1 打線製程 1
1-1-1放電結球製程(Electrical Flame-Off process, EFO) 4
1-1-2熱音波接合(Thermosonic bonding) 4
1-2 打線接合界面反應 7
1-2-1 金鋁界面反應 7
1-2-2 銅鋁界面反應 9
1-2-3 銀鋁界面反應 16
1-3銀打線材料 16
1-3-1 純銀打線 20
1-3-2銀鈀合金線 20
1-3-3 銀金鈀合金線 23
1-4 打線接合的可靠度測試 23
1-4-1溫度對界面之影響 25
1-4-2濕度對界面之影響 25
1-4-3接合性質測試 27
1-5研究動機與目的 27
第貳章 實驗方法與步驟 29
2-1 實驗構想 29
2-2 打線製程試片 29
2-3熱時效處理條件 31
2-4可靠度測試種類及條件 31
2-5試片分析 31
第參章 結果與討論 37
3-1 As-bonded銀鋁界面微結構觀察 37
3-2時效後銀鋁界面微結構觀察 41
3-2-1介金屬化合物成長 41
3-2-2界面反應行為 52
3-2-3鈀含量對於介金屬化合物組成的影響 54
3-3 PCT 可靠度測試 57
3-3-1 PCT銀鋁界面微觀組織觀察 57
3-3-2 PCT測試銀鋁界面反應行為 62
3-3-3 介金屬化合物的腐蝕 68
3-4 TCT可靠度測試 69
3-4-1 TCT銀鋁界面微結構 71
3-4-2 TCT界面裂縫之探討 78
3-5 u-HAST可靠度測試 80
3-5-1 u-HAST銀鋁界面微觀組織 80
3-5-2 u-HAST與PCT界面反應比較 80
3-6 銀鋁界面反應在不同環境下的差異 85
第肆章 結論 90
參考文獻 91
[1]G. Harman, Wire bonding in microelectronics, McGraw-Hill Education, 2009.
[2]L. England and T. Jiang, Reliability of Cu wire bonding to Al metallization, 57 th Electronic Components and Technology Conference, Las Vegas, Nevada, pp. 1604-1613, 2007.
[3]I. Qin, H. Xu, H. Clauberg, R. Cathcart, V. L. Acoff and B. Chylak, Wire bonding of Cu and Pd coated Cu wire: bondability, reliability, and IMC formation, 61st Electronic Components and Technology Conference, Las Vegas, Nevada, pp. 1489-1495, 2011.
[4]T. Uno, Enhancing bondability with coated copper bonding wire, Microelectronics Reliability, vol. 51, pp. 88-96, 2011.
[5]R. Guo, L. Gao, D. Mao, M. Li, X. Wang and Z. Lv, Study of free air ball formation in Ag–8Au–3Pd alloy wire bonding, Microelectronics Reliability, vol. 54, pp. 2550-2554, 2014.
[6]S. K. Prasad, Advanced wire bond interconnection technology, Springer US, 2006.
[7]P. S. Chauhan, A. Choubey, Z. W. Zhong, and M. G. Pecht, Copper wire bonding, Springer-Verlag New York, pp.1-9, 2013.
[8]謝宗雍, 電子構裝技術簡介, 電子月刊,第三卷第七期, pp. 57-76, 1997.
[9]H. Xu, C. Liu, V. V. Silberschmidt, S. S. Pramana, T. J. White and Z. Chen, New mechanisms of void growth in Au–Al wire bonds: Volumetric shrinkage and intermetallic oxidation, Scripta Materialia, vol. 65, pp. 642-645, 2011.
[10]T. B. Masslski, Binary alloy phase diagrams vol. 1 ASM Interational Material Park Ohio, 1986.
[11]H. Clauberg, P. Backus, and B. Chylak, Nickel–palladium bond pads for copper wire bonding, Microelectronics Reliability, vol. 51, pp. 75-80, 2011.
[12]J. S. Cho, K. A. Yoo, S. J. Hong, J. T. Moon, Y. J. Lee, W. Han, Pd effects on the reliability in the low cost Ag bonding wire, 60th Electronic Components and Technology Conference, Las Vegas, Nevada, pp. 1541-1546, 2010.
[13]S. Murali, N. Srikanth, and C. J. Vath, An analysis of intermetallics formation of gold and copper ball bonding on thermal aging, Materials Research Bulletin, vol. 38, pp. 637-646, 2003.
[14]A. F. Voter, J. Westbrook, and R. Fleischer, Intermetallic compounds, New York: Wiley, vol. 1, p. 77, 1994.
[15]A. Teverovsky, Effect of vacuum on high-temperature degradation of gold/aluminum wire bonds in PEMs, Reliability Physics Symposium, pp. 547-556, 2004.
[16]N. J. Noolu, N. M. Murdeshwar, K. J. Ely, J. C. Lippold, and W. A. Baeslack, Degradation and failure mechanisms in thermally exposed Au–Al ball bonds, Journal of Materials Research, vol. 19, pp. 1374-1386, 2004.
[17]C. Hen-So, H. Ker-Chang, T. Martens, and A. Yang, Wire-bond void formation during high temperature aging, IEEE Transactions on Components and Packaging Technologies, vol. 27, pp. 155-160, 2004.
[18]T. K. Lee, C. D. Breach, and W. L. Chong, Comparsion of Au/Al and Cu/Al in wirebonding assembly and reliability, 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taiwan, pp. 234-237, 2011.
[19]H. Xu, C. Liu, V. Silberschmidt, S. S. Pramana, T. White and Z.ChenIntermetallic phase transformations in Au–Al wire bonds, Intermetallics, vol. 19, pp. 1808-1816, 2011.
[20]P. S. Chauhan, A. Choubey, Z. W. Zhong, and M. G. Pecht, Copper wire bonding, Springer-Verlag New York, pp.174, 2013.
[21]Y. W. Lin, R.Y. Wang, W.B. Ke, I. S. Wang, Y.-T. Chiu, K.C. Lu and K.L. Lin The Pd distribution and Cu flow pattern of the Pd-plated Cu wire bond and their effect on the nanoindentation, Materials Science and Engineering: A, vol. 543, pp. 152-157, 2012.
[22]Y.-W. Lin, W.-B. Ke, R.-Y. Wang, I. S. Wang, Y.-T. Chiu, K.-C. Lu and K.L. Lin, The influence of Pd on the interfacial reactions between the Pd-plated Cu ball bond and Al pad, Surface and Coatings Technology, vol. 231, pp. 599-603, 2013.
[23]A. J. McAlister, The Ag−Al (Silver-Aluminum) system, Bulletin of Alloy Phase Diagrams, vol. 8, pp. 526-533, 1987.
[24]N. A. Zarkevich and D. D. Johnson, Predicted hcp Ag-Al metastable phase diagram, equilibrium ground states, and precipitate structure, Physical Review B, vol. 67, pp. 06,2003.
[25]M.R. Choi, H.G. Kim, T.W. Lee, Y.J. Jeon, Y.K. Ahn and K.W. Koo, Microstructural evaluation and failure analysis of Ag wire bonded to Al pads, Microelectronics Reliability, vol. 55, pp. 2306-2315, 2015.
[26]H. Olia, M. Abbasi, and S. H. Razavi, Evaluation of diffusion and phase transformation at Ag/Al bimetal produced by cold roll welding, Transactions of Nonferrous Metals Society of China, vol. 22, pp. 312-317, 2012.
[27]K. A. Yoo, C. Uhm, T. J. Kwon, J. S. Cho, and J. T. Moon, Reliability study of low cost alternative Ag bonding wire with various bond pad materials, 11th Electronics Packaging Technology Conference, Singapore, pp. 851-857,2009.
[28]T.H. Chuang, H.C. Wang, C.H. Tsai, C.C. Chang, C.H. Chuang and J.D. Lee, , Thermal stability of grain structure and material properties in an annealing-twinned Ag–8Au–3Pd alloy wire, Scripta Materialia, vol. 67, pp. 605-608, 2012.
[29]E. Sancaktar, P. Rajput, and A. Khanolkar, Correlation of silver migration to the pull out strength of silver wire embedded in an adhesive matrix, IEEE Transactions on Components and Packaging Technologies, vol. 28, pp. 771-780, 2005.
[30]S. Kumar, H. Kwon, Y. I. L. Heo, S. H. Kim, J. S. Hwang, and J. T. Moon, Thermosonic ball bonding behavior of Ag-Au-Pd alloy wire, 15th Electronics Packaging Technology Conference , Singapore, pp. 15-20, 2013.
[31]I. Karakaya and W. T. Thompson, The Ag−Pd (Silver-Palladium) system, Bulletin of Alloy Phase Diagrams, vol. 9, pp. 237-243, 1988.
[32]T. H. Chuang, C. C. Chang, C. H. Chuang, J. D. Lee, and H. H. Tsai, Formation and growth of intermetallics in an annealing-twinned Ag-8Au-3Pd wire bonding package during reliability tests, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, pp. 3-9, 2013.
[33]L. C. Wai, X. Zhang, V. Kripesh, C. Premachandran, S. Chong and Y. Y. Liu, Reliability results of 0.8 mil fine pitch copper wire bonding on immersion gold plated pad for copper low-k devices, 10th Electronics Packaging Technology Conference , pp. 957-964, 2008.
[34]S. L. Khoury, D. J. Burkhard, D. P. Galloway, and T. A. Scharr, A comparison of copper and gold wire bonding on integrated circuit devices, 40th Electronic Components and Technology Conference, Las Vegas, Nevada, pp. 768-776, 1990.
[35]B. Q. Wang, K. Davison, and J. Osenbach, Copper wire bond strength reliability assessment, 14th Electronics Packaging Technology Conference , pp. 251-255, 2012.
[36]C. Gan, E. Ng, B. Chan, U. Hashim, and F. Classe, Technical barriers and development of Cu wirebonding in nanoelectronics device packaging, Journal of Nanomaterials, vol.96, pp. 1-7, 2012.
[37]C. Gan, E. Ng, B. Chan, F. Classe, T. Kwuanjai, and U. Hashim, Wearout reliability and intermetallic compound diffusion kinetics of Au and PdCu wires used in nanoscale device packaging, Journal of Nanomaterials, p. 4, 2013.
[38]Y. C. Jang, S. Y. Park, H. D. Kim, Y. C. Ko, K. W. Koo and M. R. Choi, Study of intermetallic compound growth and failure mechanisms in long term reliability of silver bonding wire, 16th Electronics Packaging Technology Conference, pp. 704-708, 2014.
[39]C. Wang, The quality test of wire bonding, Modern Applied Science, vol. 3, pp. 50-26, 2009.
[40]H.W. Hsueh, F.Y. Hung, T.-S. Lui, and L.-H. Chen, Microstructure, electric flame-off characteristics and tensile properties of silver bonding wires, Microelectronics Reliability, vol. 51, pp. 2243-2249, 2011.
[41]C. QiJia, A. Pagba, D. Reynoso, S. Thomas, and H. J. Toc, Cu wire and beyond - Ag wire an alternative to Cu12th Electronics Packaging Technology Conference, pp. 591-596, 2010.
[42]C. H. Cheng, H. L. Hsiao, S. I. Chu, Y. Y. Shieh, C. Y. Sun, and C. Peng, Low cost silver alloy wire bonding with excellent reliability performance, 63rd Electronic Components and Technology Conference, Las Vegas, Nevada,, pp. 1569-1573, 2013.
[43]R. R. Hultgren and A. S. f. Metals, Selected values of the thermodynamic properties of binary alloys, American Society for Metals, 1973.
[44]M. Hillert, B. L. Averbach, and M. Cohen, Thermodynamic properties of solid aluminum-silver alloys, Acta Metallurgica, vol. 4, pp. 31-36, 1956.
[45]陳俊毅, Ag-Al-Pd三元系統平衡相圖研究, 中山大學材料與光電科學學系碩士學位論文, 中山大學, 2013.
[46]Y. C. Janga, Study of intermetallic compound growth and failure mechanisms in long term reliabilityof silver bonding wire 17th Electronics Packaging Technology Conference, pp. 704-708, 2015.
[47]林津裕銀鈀合金型/銀鈀金合金型打線在可靠度測試下之介面反應, 成功大學材料科學及工程學系碩士學位論文, 2014.
[48]R. Guo, T. Hang, D. Mao, M. Li, K. Qian and Z. Lv, Behavior of intermetallics formation and evolution in Ag–8Au–3Pd alloy wire bonds, Journal of Alloys and Compounds, vol. 588, pp. 622-627, 2014.
[49]M.R. Choi, H.G. Kim, T.W. Lee, Y.J. Jeon, Y.K. Ahn and K.W. Koo, Microstructural evaluation and failure analysis of Ag wire bonded to Al pads, Microelectronics Reliability, vol. 55, pp. 2306-2315, 2015.
[50]L. Pauling, The Nature of the Chemical Bond. IV. The Energy of Single Bonds and the Relative Electronegativity of Atoms, Journal of the American Chemical Society, vol. 54, pp.3570-3582, 1932
[51]C.S. Goh, W.L.E. Chong, T.K. Lee and C. Breach, Corrosion study and intermetallics formation in gold and copper wire bonding in microelectronics packaging. vol.3, pp.391-404, 2013
[52]R.D. Stull and H. Prophet, JANAF thermochemical tables. No. NSRDS-NBS-37. National Standard Reference Data System, 1971
[53]R.T. Foley and T.H. Nguyen, The chemical nature of aluminum corrosion v. energy transfer in aluminum dissolution. Journal of the Electrochemical Society, vol.129, pp. 464-467,1982.
[54]L. F. Mondolfo, Aluminum alloys structure and properties. London: Butterworths, pp.213 1979.
[55]A. J. McAlister, The Al−Pd (Aluminum-Palladium) system, Bulletin of Alloy Phase Diagrams, vol. 7, pp. 368-374, 1986.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔