|
[1]C. Z. Yong, Y. Bo, Y. T. Nan, B. Dawoud, E. Amer, D. Gross, H. Ramsurn, R. B. Gupta, J. R. Saunders, D. Benfield, W. Moussa, and A. Amirfazli, Nanotechnology’s implications for select systems of renewable energy, ACS Sustainable Chemistry and Engineering 4, 483-503 (2007). [2]G. Crabtree and N. Lewis, Solar energy conversion., Physics Today 9951-9957 (2007). [3]N. Muradov and T. Veziroglu, “green path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies, International Journal of Hydrogen Energy 33, 6804–6839 (2008). [4]M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, A review and recent developments in photocatalytic water-splitting using tio2 for hydrogen production, Renewable and Sustainable Energy Reviews 11, 401–425 (2007). [5] E. Broda, Utilization of solar radiation for water photolysis, International Association for Hydrogen Energy 5, 453-454 (1980). [6]F. E. Osterloh and B. A. Parkinson, Recent developments in solar water-splitting photocatalysis, Mrs Bulletin 36, 17–22 (2011). [7]I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, Role of oxygen vacancy in the plasma-treated tio 2 photocatalyst with visible light activity for no removal, Journal of Molecular 161, 205–212 (2000). [8]H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, and C. Li, Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst, Journal of Catalysis 266, 165–168 (2009). [9]L. Xie, J. Ma, and G. Xu, Preparation of a novel Bi2MoO6 flake-like nanophotocatalyst by molten salt method and evaluation for photocatalytic decomposition of rhodamine b, Materials Chemistry and Physics 110, 197–200 (2008). [10]J. Zhang, F. Shi, J. Lin, D. Chen, J. Gao, Z. Huang, X. Ding, and C. Tang, Self-assembled 3-d architectures of biobr as a visible.pdf, 2937–2941 (2008). [11]G. Liao, S. Chen, X. Quan, H. Yu, and H. Zhao, Graphene oxide modified g-c3n4 hybrid with enhanced photocatalytic capability under visible light irradiation, Journal of Materials Chemistry 22, 2721 (2012). [12]M. M. Byranvand, A. N. Kharat, L. Fatholahi, and Z. M. Beiranvand, A review on synthesis of nano-TiO2 via different methods, Journal of Nanostructures 3, 1–9 (2013). [13]A Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode., Nature 238, 37–38 (1972). [14]A. Kudo, Photocatalyst materials for water splitting, Catalysis Surveys from Asia 7, 31–38 (2003). [15]M. A. Fox and M. T. Dulay, Heterogeneous photocatalysis, Chemical Reviews 93, 341–357 (1993). [16]H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, Nano-photocatalytic materials: possibilities and challenges, Advanced Materials 24, 229–251 (2012). [17]A. Giwa, Photocatalytic decolourization and degradation of c. i. basic blue 41 using TiO2 nanoparticles, Journal of Environmental Protection 03, 1063–1069 (2012). [18]J. Yang, D. Wang, H. Han, and C. Li, Roles of cocatalysts in photocatalysis and photoelectrocatalysis, Accounts of Chemical Research 46, 1900–1909 (2013). [19]X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, and Y. Zhu, Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization, Langmuir 29, 3097–3105 (2013). [20]M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemannt, Environmental applications of semiconductor photocatalysis, Chemical Reviews 95, 69–96 (1995). [21]Gupta S M, Tripathi M. 'A review of TiO2 nanoparticles,' Chinese Sci Bull 56, 1639−1657 (2011). [22]A. Mills and S. Le Hunte, An overview of semiconductor photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry 108, 1–35 (1997). [23]D. W. Bahnemann, C. Kormann, and M. R. Hoffmann, Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study, The Journal of Physical Chemistry 91, 3789–3798 (1987). [24]K. Sivula, F. Le Formal, and M. Gr??tzel, Wo3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach, , Chemistry of Materials, 21, . 2862–2867 , 2009. [25]T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, Preparation of s-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Applied Catalysis A: General 265, 115–121 (2004). [26]G. Guerrero, P. H. Mutin, and A. Vioux, Anchoring of phosphonate and phosphinate coupling molecules on titania particles, Chemistry of Materials 13, 4367–4373 (2001). [27] T. Lopes, L. Andrade, H. A. Ribeiro, A. Mendes, Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy, International journal of hydrogen energy 35, 11601-11608 (2010). [28]M. Gratzel, Photoelectrochemical cells, Nature 414, 338–344 (2001). [29]T. Bak, J. Nowotny, M. Rekas, and C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. materials-related aspects, International Journal of Hydrogen Energy 27, 991–1022 (2002). [30]M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Solar water splitting cells., Chemical Reviews (Washington, DC, United States) 110, 6446–6473 (2010). [31]L. Fornarini, A. J. Nozik, and B. A. Parkinson, The energetics of p/n photoelectrolysis cells, The Journal of Physical Chemistry 88, 3238–3243 (1984). [32]F. D. Brandão, M. V. B. Pinheiro, G. M. Ribeiro, G. Medeiros-Ribeiro, and K. Krambrock, Identification of two light-induced charge states of the oxygen vacancy in single-crystalline rutile TiO2, Phys. Rev. B 80, 235204-235211 (2009). [33]G. S. Herman, Y. Gao, T. T. Tran, and J. Osterwalder, X-ray photoelectron diffraction study of an anatase thin film: TiO2(001), Surface Science 447, 201–211 (2000). [34]D.-H. Lee, J.-G. Park, K. Jin Choi, H.-J. Choi, and D.-W. Kim, Preparation of brookite-type TiO2/carbon nanocomposite electrodes for application to li ion batteries, European Journal of Inorganic Chemistry 2008, 878–882 (2008). [35]U. Diebold, The surface science of titanium dioxide, 48, 53-229 (2003). [36]D. A. H. Hanaor and C. C. Sorrell, Review of the anatase to rutile phase transformation, Journal of Materials Science 46, 855–874 (2011). [37]H. Zhang and J. F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2, The Journal of Physical Chemistry B 104, 3481–3487 (2000). [38]Y. Qiu, K. Nasu, and C. Q. Wu, Sextic anharmonicity and ferroelectricity in photoexcited SrTiO3 at low temperatures, New Journal of Physics 9, 1-8 (2007). [39]A. L. Linsebigler, A. L. Linsebigler, J. T. Yates Jr, G. Lu, G. Lu, and J. T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical Reviews 95, 735–758 (1995). [40]L. Zhang, H. Ji, Y. Lei, and W. Xiao, Oxygen adsorption on anatase surfaces and edges, Applied Surface Science 257, 8402–8408 (2011). [41]B. B. Lakshmi, C. J. Patrissi, and C. R. Martin, Sol−gel template synthesis of semiconductor oxide micro- and nanostructures, Chemistry of Materials 9, 2544–2550 (1997). [42]T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Formation of titanium oxide nanotube, Langmuir 14, 3160–3163 (1998). [43]Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen, and S. X. Wang, Preparation and photoluminescence of highly ordered TiO2 nanowire arrays, Applied Physics Letters 78, 1125–1127 (2001). [44]J. Lee, T. G. Kim, H. Choi, and Y. Sung, Enhanced photochemical response of TiO2/CdSe heterostructured & design, American Chemical Society 7, 2588-2593 (2007). [45]H. Yoshitake, T. Sugihara, and T. Tatsumi, Preparation of wormhole-like mesoporous TiO2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition, Society 14, 1023–1029 (2002). [46]L. Gonz, G. Lozano, and A. Barranco, TiO2–SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition, Journal of Materials Chemistry 20, 6408–6412 (2010). [47]P. Löbl, M. Huppertz, and D. Mergel, Nucleation and growth in TiO2 films prepared by sputtering and evaporation, Thin Solid Films 251, 72–79 (1994). [48]A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays, Small 5, 104–111 (2009). [49]J. Jiu, S. Isoda, F. Wang, and M. Adachi, Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film, Journal of Physical Chemistry B 110, 2087–2092 (2006). [50]S. H. Kang, S.-H. Choi, M.-S. Kang, J.-Y. Kim, H.-S. Kim, T. Hyeon, and Y.-E. Sung, Nanorod-based dye-sensitized solar cells with improved charge collection efficiency, Advanced Materials 20, 54–58 (2008). [51]H. Kim and B. L. Yang, Effect of seed layers on TiO2 nanorod growth on fto for solar hydrogen generation, International Journal of Hydrogen Energy 40, 5807–5814 (2015). [52]M. Y. Liao, L. Fang, C. L. Xu, F. Wu, Q. L. Huang, and M. Saleem, Effect of seed layer on the growth of rutile TiO2 nanorod arrays and their performance in dye-sensitized solar cells, Materials Science in Semiconductor Processing 24, 1–8 (2014). [53]K. Choy, Chemical vapour deposition of coatings, Progress in Materials Science 48, 57–170 (2003). [54]A. Mubarak, E. Hamzah, and M. R. M. Toff, Review of physical vapour deposition (PVD) techniques for hard coating, Jurnal Mekanikal 20, 42–51 (2005). [55]W. L. Suchanek and R. E. Riman, Hydrothermal synthesis of advanced ceramic powders, Advances in Science and Technology 45, 184–193 (2006). [56]K. Byrappa and T. Adschiri, Hydrothermal technology for nanotechnology, Progress in Crystal Growth and Characterization of Materials 53, 117–166 (2007). [57]U. C. Ahamefula, Z. Ibarahim, and M. Y. Othman, Malaysian journal of fundamental & applied sciences hydrothermally synthesized cadmium selenide quantum dot for solar cell, 8, 143–148 (2012). [58]K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology, (2001). [59]J. N. Nian and H. Teng, Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor, Journal of Physical Chemistry B 110, 4193–4198 (2006). [60]M. Guo, P. Diao, X. Wang, and S. Cai, The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of zno nanorod array films, Journal of Solid State Chemistry 178, 3210–3215 (2005). [61]Y. Li, J. Liu, X. Huang, and G. Li, Hydrothermal synthesis of bi2wo6 uniform hierarchical microspheres, Crystal Growth & Design 7, 1350–1355 (2007). [62]B. Liu and E. S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells, Journal of the American Chemical Society 131, 3985–3990 (2009). [63]M. Yoshimura and K. Byrappa, Hydrothermal processing of materials: past, present and future, Journal of Materials Science 43, 2085–2103 (2008). [64]K. S. Suslick, Sonochemistry, , Kirk-Othmer Encyclopedia of Chemical Tecnology. 14, 516–541 (1998). [65]H. Cheng, J. Ma, Z. Zhao, and L. Qi, Hydrothermal preparation of uniform nanosize rutile and anatase particles, Chemistry of Materials 7, 663–671 (1995). [66]M. Iraj, F. D. Nayeri, E. Asl-Soleimani, and K. Narimani, Controlled growth of vertically aligned TiO2 nanorod arrays using the improved hydrothermal method and their application to dye-sensitized solar cells, Journal of Alloys and Compounds 659, 44–50 (2016). [67]X. H. Xia, Y. Liang, Z. Wang, J. Fan, Y. S. Luo, and Z. J. Jia, Synthesis and photocatalytic properties of TiO2 nanostructures, Materials Research Bulletin 43, 2187–2195 (2008). [68]H.-E. Wang, Z. Chen, Y. H. Leung, C. Luan, C. Liu, Y. Tang, C. Yan, W. Zhang, J. A. Zapien, I. Bello, and S.-T. Lee, Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates, Applied Physics Letters 96, 263104 (2010). [69]J. Nayak, K. Prabakar, J. W. Park, and H. Kim, Electrochimica acta effect of synthesis temperature on structure , optical and photovoltaic properties of TiO2 nanorod thin films, Electrochimica Acta 65, 44–49 (2012). [70]K. Nakata and A. Fujishima, Journal of photochemistry and photobiology c : photochemistry reviews TiO2 photocatalysis : design and applications, 13, 169–189 (2012). [71]E. Pelizzetti and C. Minero, Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles, Electrochimica Acta 38, 47–55 (1993). [72]T. Wu, G. Liu, J. Zhao, H. Hidaka, and N. Serpone, Photoassisted degradation of dye pollutants . v . self-photosensitized oxidative transformation of rhodamine b under visible light irradiation in aqueous TiO2 dispersions, Journal of Physical Chemistry B 102, 5845–5851 (1998). [73]R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Light-induced amphiphilic surfaces, Nature 388, 431–432 (1997). [74]S. Kim, M. Taya, and C. Xu, Contrast, switching speed, and durability of V2O5–TiO2 film-based electrochromic windows, Journal of The Electrochemical Society 156, 40-45 (2009). [75]A. G. Dylla, G. Henkelman, and K. J. Stevenson, Lithium insertion in nanostructured TiO2 architectures, Accounts of Chemical Research 46, 1104–1112 (2013). [76]J. M. Stipkala, F. N. Castellano, T. A. Heimer, C. A. Kelly, K. J. T. Livi, and G. J. Meyer, Light-induced charge separation at sensitized sol−gel processed semiconductors, Chemistry of Materials 9, 2341–2353 (1997). [77]V. M. Cristante, A. G. S. Prado, S. M. A. Jorge, J. P. S. Valente, A. O. Florentino, and P. M. Padilha, Synthesis and characterization of TiO2 chemically modified by Pd(ii) 2-aminothiazole complex for the photocatalytic degradation of phenol, Journal of Photochemistry and Photobiology A: Chemistry 195, 23–29 (2008). [78]Q. Wang, M. Zhang, C. Chen, W. Ma, and J. Zhao, Photocatalytic aerobic oxidation of alcohols on TiO2: the acceleration effect of a Bronsted Acid, Angewandte Chemie - International Edition 49, 7976–7979 (2010). [79]X. Fu, L. A. Clark, W. A. Zeltner, and M. A. Anderson, Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene, Journal of Photochemistry and Photobiology A: Chemistry 97, 181–186 (1996). [80]B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737–740 (1991). [81]M. Quintana, T. Edvinsson, A. Hagfeldt, and G. Boschloo, Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime, Journal of Physical Chemistry C 111, 1035–1041 (2007). [82]M. Grätzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry 164, 3–14 (2004). [83]U. Kirner, K. D. Schierbaum, W. Göpel, B. Leibold, N. Nicoloso, W. Weppner, D. Fischer, and W. F. Chu, Low and high temperature TiO2 oxygen sensors, Sensors and Actuators B: Chemical 1, 103–107 (1990). [84]P. K. Dutta, A. Ginwalla, B. Hogg, B. R. Patton, B. Chwieroth, Z. Liang, P. Gouma, M. Mills, and S. Akbar, Interaction of carbon monoxide with anatase surfaces at high temperatures: optimization of a carbon monoxide sensor, The Journal of Physical Chemistry B 103, 4412–4422 (1999). [85]Y. Xu, K. Yao, X. Zhou, and Q. Cao, Platinum-titania oxygen sensor and their sensing mechanism, 14, 492–494 (1993). [86]U. Gesenhues, Calcination of metatitanic acid to titanium dioxide white pigments, Chemical Engineering and Technology 24, 685–694 (2001). [87]S. Farrokhpay, A review of polymeric dispersant stabilisation of titania pigment, Advances in Colloid and Interface Science 151, 24–32 (2009). [88]A. Fujishima, X. Zhang, and D. A. Tryk, Surface science reports TiO2 photocatalysis and related surface phenomena, 63, 515–582 (2008). [89]B. Liu, K. Nakata, M. Sakai, H. Saito, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, Mesoporous TiO2 core-shell spheres composed of nanocrystals with exposed high-energy facets: facile synthesis and formation mechanism, Langmuir 27, 8500–8508 (2011). [90]K. I. Katsumata, S. Okazaki, C. E. J. Cordonier, T. Shichi, T. Sasaki, and A. Fujishima, Preparation and characterization of self-cleaning glass for vehicle with niobia nanosheets, ACS Applied Materials and Interfaces 2, 1236–1241 (2010). [91]S.-S. Li, C.-P. Chang, C.-C. Lin, Y.-Y. Lin, C.-H. Chang, J.-R. Yang, M.-W. Chu, and C.-W. Chen, Interplay of three-dimensional morphologies and photocarrier dynamics of polymer/ TiO2 bulk heterojunction solar cells, Journal of the American Chemical Society 133, 11614-11620 (2011). [92]M. A. Green, Third generation photovoltaics: ultra-high conversion efficiency at low cost, Progress in Photovoltaics: Research and Applications 9, 123–135 (2001). [93]K. Yu and J. Chen, Enhancing solar cell efficiencies through 1-d nanostructures, Nanoscale Research Letters 4, 1–10 (2009). [94]P. K. Dutta, A. Ginwalla, B. Hogg, B. R. Patton, B. Chwieroth, Z. Liang, P. Gouma, M. Mills, and S. Akbar, Interaction of carbon monoxide with anatase surfaces at high temperatures: optimization of a carbon monoxide sensor, The Journal of Physical Chemistry B 103, 4412–4422 (1999). [95]K. Marycz, U. Agnieszka, J. Grzesiak, A. S. N, M. Mar, A. Donesz-sikorska, and J. Krzak, The osteogenic properties of multipotent mesenchymal stromal cells in cultures on TiO2 sol-gel-derived biomaterial, 2015, 1-11 (2015). [96]R. Fujita, M. Sakairi, T. Kikuchi, and S. Nagata, Corrosion resistant TiO2 film formed on magnesium by liquid phase deposition treatment, Electrochimica Acta 56, 7180–7188 (2011). [97]W. Choi, J. Y. Ko, H. Park, and J. S. Chung, Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone, Applied Catalysis B: Environmental 31, 209–220 (2001). [98]Y. Wan, J. Ma, W. Zhou, Y. Zhu, X. Song, and H. Li, Preparation of titania-zirconia composite aerogel material by sol-gel combined with supercritical fluid drying, Applied Catalysis A: General 277, 55–59 (2004). [99]K. Woan, G. Pyrgiotakis, and W. Sigmund, Photocatalytic carbon-nanotube-tio 2 composites, Advanced Materials 21, 2233–2239 (2009). [100]S. D. Perera, R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K. J. Balkus, Hydrothermal synthesis of graphene- TiO2 nanotube composites with enhanced photocatalytic activity, ACS Catalysis 2, 949–956 (2012). [101]W. Choi, A. Termin, and M. R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, Journal of Physical Chemistry 98, 13669–13679 (1994). [102]V. Subramanian, E. Wolf, and P. V Kamat, Semiconductor-metal composite nanostructures to what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films, Journal of Physical Chemistry B 105, 11439–11446 (2001). [103]Y. Ao, J. Xu, S. Zhang, and D. Fu, A one-pot method to prepare n-doped titania hollow spheres with high photocatalytic activity under visible light, Applied Surface Science 256, 2754–2758 (2010). [104]T. He, Y. Cao, X. Hu, H. Liu, G. Zhang, W. Yang, and J. Yao, Photochromism of wo 3 colloids combined with TiO2 nanoparticles, J. Phys. Chem. B 106, 12670–12676 (2002). [105]C.-Y. Yen, Y.-F. Lin, C.-H. Hung, Y.-H. Tseng, C.-C. M. Ma, M.-C. Chang, and H. Shao, The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/ TiO2 nanocomposites., Nanotechnology 19, 045604-045615 (2008). [106]T. N. Lambert, C. a Chavez, B. Hernandez-sanchez, P. Lu, N. S. Bell, A. Ambrosini, T. Friedman, T. J. Boyle, D. R. Wheeler, and D. L. Huber, Synthesis and characterization of titania-graphene nanocomposites, Journal of Physical Chemistry C 113, 19812–19823 (2009). [107]A. K. Geim and K. S. Novoselov, The rise of graphene., Nat. Mater 6, 183–191 (2007). [108]I. S. I. Web, S. This, H. Press, M. Science, N. York, and A. Nw, Graphene : status and prospects, Science, 324, 1530-1534 (2014). [109]C.-T. C. Jianguo Song, Xinzhi Wang, Preparation and characterization of graphene oxide, Journal of Nanomaterials 2014, 1-6 (2014). [110]D. Chen, H. Feng, and J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications, Chemical Reviews 112, 6027–6053 (2012). [111]W. Gao, The chemistry of graphene oxide, Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications 61–95 (2015). [112]S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide, Carbon 49, 3019–3023 (2011). [113]H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, and Y. H. Lee, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Advanced Functional Materials 19, 1987–1992 (2009). [114]C. Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C. H. Tsai, Y. Huang, and L. J. Li, Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors, ACS Nano 4, 5285–5292 (2010). [115]P. Wang, J. Wang, X. Wang, H. Yu, J. Yu, M. Lei, and Y. Wang, Applied catalysis b : environmental one-step synthesis of easy-recycling TiO2-rGo nanocomposite photocatalysts with enhanced photocatalytic activity, “Applied Catalysis B, Environmental 132–133, 452–459 (2013). [116]L. Tan, W. Ong, S. Chai, and A. R. Mohamed, Reduced graphene oxide- TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide, 1–9 (2013). [117]Y. Yao, G. Li, S. Ciston, R. M. Lueptow, and K. a. Gray, Photoreactive TiO2 /carbon nanotube composites: synthesis and reactivity, Environmental Science & Technology 42, 4952–4957 (2008). [118]T. H. Muster, A. Trinchi, T. A. Markley, D. Lau, P. Martin, A. Bradbury, A. Bendavid, and S. Dligatch, A review of high throughput and combinatorial electrochemistry, Electrochimica Acta 56, 9679–9699 (2011). [119]M. J. Fasolka and E. J. Amis, Combinatorial materials science: measures of success, Combinatorial Materials Science 1–20 (2006). [120]E. Reddington, Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts, Science 280, 1735–1737 (1998). [121]A. Bard, H. C. Lee, K. Leonard, H. S. Park, and S. Wang, Rapid screening methods in the discovery and investigation of new photocatalyst compositions., RSC Energy and Environment Series 9, 132–153 (2013). [122]N. M. Nursam, X. Wang, and R. A. Caruso, High-throughput synthesis and screening of titania-based photocatalysts, ACS Combinatorial Science 17, 548–569 (2015). [123]M. Woodhouse and B. A. Parkinson, Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis, Chem Soc Rev 38, 197–210 (2009). [124]A. D. Spong, G. Vitins, S. Guerin, B. E. Hayden, A. E. Russell, and J. R. Owen, Combinatorial arrays and parallel screening for positive electrode discovery, Journal of Power Sources 119–121, 778–783 (2003). [125]K. Itaka, H. Minami, H. Kawaji, Q. Wang, J. Nishii, M. Kawasaki, and H. Koinuma, High-speed evaluation of thermoelectric materials using multi-channel measurement system, Journal of Thermal Analysis and Calorimetry 69, 1051–1058 (2002). [126]E. Danielson, J. Golden, and E. McFarland, A combinatorial approach to the discovery and optimization of luminescent materials, Nature 389, 2331–2333 (1997). [127]K. Hasegawa, P. Ahmet, N. Okazaki, T. Hasegawa, K. Fujimoto, M. Watanabe, T. Chikyow, and H. Koinuma, Amorphous stability of hfo2 based ternary and binary composition spread oxide films as alternative gate dielectrics, Applied Surface Science 223, 229–232 (2004). [128]S. Fujino, M. Murakami, V. Anbusathaiah, S. H. Lim, V. Nagarajan, C. J. Fennie, M. Wuttig, L. Salamanca-Riba, and I. Takeuchi, Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite, Applied Physics Letters 92, 1–4 (2008). [129]J. He, S. Xu, Y. K. Yoo, Q. Xue, H. C. Lee, S. Cheng, X. D. Xiang, G. F. Dionne, and I. Takeuchi, Room temperature ferromagnetic n-type semiconductor in (in 1-xfex)2o3-??, Applied Physics Letters 86, 1–3 (2005). [130]D. Stamopoulos, M. Pissas, and E. Manios, Ferromagnetic-superconducting hybrid films and their possible applications: a direct study in a model combinatorial film, Physical Review B - Condensed Matter and Materials Physics 71, 1–6 (2005). [131]Y. Liu, C. Li, J. Wang, X. Fan, G. Yuan, S. Xu, M. Xu, J. Zhang, and Y. Zhao, Field emission properties of zno nanorod arrays by few seed layers assisted growth, Applied Surface Science 331, 497–503 (2015). [132]W. S. Hummers and R. E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society 80, 1339 (1958). [133]J. Yan, G. Wu, N. Guan, L. Li, Z. Li, and X. Cao, Understanding the effect of surface/bulk defects on the photocatalytic activity of tio2: anatase versus rutile, Physical Chemistry Chemical Physics 15, 10978-10988 (2013).
|