( 您好!臺灣時間:2021/05/09 07:59
字體大小: 字級放大   字級縮小   預設字形  


論文名稱(外文):The Photocatalytic and Photoelectrochemical Properties of Combinatorial Density Gradient TiO2-rGO Nanocomposites Using Hydrothermal Synthesis
指導教授(外文):Kao-Shuo ChangIn-Gann Chen
外文關鍵詞:Spin coatingHydrothermal methodReduced graphene oxideDensity gradient of TiO2-rGO nanorod compositesPhotocatalytic reactionPhotoelectrochemical reaction
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
XRD, SEM, FTIR, Raman和PL等儀器被使用於研究材料變化的趨勢,包含相、形貌、微結構、光學、成分和化學鍵結的分析,並以光降解亞甲藍水溶液測試光催化性質,最後結果顯示結合大量的還原氧化石墨烯能更加有效的輔助TiO2展現更好的光催化性質。在光電化學中以紫外光照射且加以1V的電位測試光電流密度,TiO2-rGO量測出的光電流為25 μA/cm2,為純TiO2的兩倍之多(約10 μA/cm2)。

The application of renewable energy has become a global issue in recent years. Semiconductor photocatalyst can effectively decompose organic pollutants and split water to harvest hydrogen fuels by solar light. However, researchers keep exploring the novel materials to overcome nature limitations of materials.
In order to efficiently obtain an optimal photocatalyst, a combinatorial composition spread sample was fabricated to facilitate the exploration of appropriate parameters. In this study, density gradient rutile TiO2 was grown on silicon substrate by spin coating and hydrothermal method. Moreover, coupling with density gradient of reduced graphene oxide (rGO) to become a combinatorial density gradient of TiO2-rGO nanorod composites. This novel concept is different from the literature of hydrothermal method which only can produce single parameter on one sample and repeat multiple procedures to explore the best condition. On the contrary, our combinatorial density gradient of TiO2-rGO nanorod composites sample contains a wide range of compositions in a single sample, enabling efficient screening of materials for applications.
Various techniques of XRD, SEM, FTIR, Raman, and PL were employed to determine the various characteristics, including phases, morphologies, microstructures, optical properties, compositions, and chemical bondings. Photodegradation activities were determined by decomposing methylene blue (MB) under UV light. The result shows that coupling with suitable amount of rGO can effectively assist TiO2 to enhance the photocatalytic properties. In photoelectrochemical (PEC) reaction, the cell was measured with a constant 1 V bias under UV light. The measured current of TiO2-rGO nanorod composites was approximately 25 μA/cm2 more than double the value obtained from the pure TiO2 nanorods (approximately 10 μA/cm2).

摘要 I
Abstract II
誌謝 III
Content IV
Table Content VI
Figure Content VII
Chapter 1 Introduction 1
A. Research Objective 1
B. Research Background 1
C. Photocatalysis 2
C.1 Photodegradation 4
C.2 Photoelectrochemical (PEC) reaction 6
D. Titanium Dioxide (TiO2) 9
D.1 Properties and Structure 9
D.2 Fabrication 13
D.3 Applications 21
E. Overview of Graphene and Reduced Graphene Oxide 25
E.1 Graphene 25
E.2 Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) 26
E.3 TiO2-rGO Composites 27
F. Combinatorial Approach 28
F.1 Introduction 28
F.2 Combinatorial Hydrothermal Synthesis 29
Chapter 2 Experiment 32
A.Materials 32
B. Experimental Procedures 33
B.1 Substrate Preparation 33
B.2 Different-Density TiO2 Seed Layer Preparation 33
B.3 Hydrothermal Growth of TiO2 Nanorods 35
B.4 Graphene Oxide Layer 36
C. Characterizations 38
C.1 X-ray Diffraction (XRD) 38
C.2 Scanning Electron Microscope (SEM) 39
C.3 Transmission Electron Microscope (TEM) 40
C.4 Fourier Transform Infrared Spectrometry (FTIR) 41
C.5 Raman Spectroscopy 42
C.6 UV-Visible Spectroscopy 43
C.7 X-ray Photoelectron Spectroscopy (XPS) 44
C.8 Photodegradation 44
C.9 Photoelectrochemical (PEC) Cell 45
Chapter 3 Results and Discussion 47
A. Previous Research 47
B. Manufacturing of a Density Gradient TiO2 Nanorods 49
B.1 Effect of Homemade Stage Angle on the Nanorods Growth 49
B.2 Effect of TBOT Concentration in Precursor Solutions on the Nanorods Growth 50
B.3 The Density Gradient TiO2 Nanorods 51
C. Reduction Analysis of Graphene Oxide 54
C.1 GO Reduced to rGO Using UV Irradiation 55
C.2 rGO Analysis in the TiO2-rGO Nanorods Composite 56
C.3 Reducing Density Gradient of GO in the TiO2-GO Nanorod Composites 58
C.4 Crystal Structure of a Density Gradient of TiO2-rGO Nanorod Composites 58
D. Photodegradation Analysis 59
D.1 Photodegradation Ability of Pure Density Gradient of TiO2 Nanorods 60
D.2 Photodegradation Ability of the Density Gradient of TiO2-rGO Nanorod Composites 62
D.3 Cycling Test for Position 5 of the Density Gradient of TiO2-rGO Nanorod Composites 64
E. Raman Spectroscopy Analysis of Position 5 of the Density Gradient of TiO2-rGO Nanorod Composites 65
F. Optical Properties of Position 5 of the Density Gradient of TiO2-rGO Nanorod Composites 67
G. Performance of Photoelectrochemical (PEC) Cell 68
Chapter 4 Conclusions 72
A.Density Gradient TiO2 Nanorods 72
B.Density Gradient of TiO2-rGO Nanorod Composites 72
C.Photodegradation Analysis 72
D.Photoelectrochemical (PEC) Analysis 73
References 74

[1]C. Z. Yong, Y. Bo, Y. T. Nan, B. Dawoud, E. Amer, D. Gross, H. Ramsurn, R. B. Gupta, J. R. Saunders, D. Benfield, W. Moussa, and A. Amirfazli, Nanotechnology’s implications for select systems of renewable energy, ACS Sustainable Chemistry and Engineering 4, 483-503 (2007).
[2]G. Crabtree and N. Lewis, Solar energy conversion., Physics Today 9951-9957 (2007).
[3]N. Muradov and T. Veziroglu, “green path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies, International Journal of Hydrogen Energy 33, 6804–6839 (2008).
[4]M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, A review and recent developments in photocatalytic water-splitting using tio2 for hydrogen production, Renewable and Sustainable Energy Reviews 11, 401–425 (2007).
[5] E. Broda, Utilization of solar radiation for water photolysis, International Association for Hydrogen Energy 5, 453-454 (1980).
[6]F. E. Osterloh and B. A. Parkinson, Recent developments in solar water-splitting photocatalysis, Mrs Bulletin 36, 17–22 (2011).
[7]I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, Role of oxygen vacancy in the plasma-treated tio 2 photocatalyst with visible light activity for no removal, Journal of Molecular 161, 205–212 (2000).
[8]H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi, and C. Li, Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst, Journal of Catalysis 266, 165–168 (2009).
[9]L. Xie, J. Ma, and G. Xu, Preparation of a novel Bi2MoO6 flake-like nanophotocatalyst by molten salt method and evaluation for photocatalytic decomposition of rhodamine b, Materials Chemistry and Physics 110, 197–200 (2008).
[10]J. Zhang, F. Shi, J. Lin, D. Chen, J. Gao, Z. Huang, X. Ding, and C. Tang, Self-assembled 3-d architectures of biobr as a visible.pdf, 2937–2941 (2008).
[11]G. Liao, S. Chen, X. Quan, H. Yu, and H. Zhao, Graphene oxide modified g-c3n4 hybrid with enhanced photocatalytic capability under visible light irradiation, Journal of Materials Chemistry 22, 2721 (2012).
[12]M. M. Byranvand, A. N. Kharat, L. Fatholahi, and Z. M. Beiranvand, A review on synthesis of nano-TiO2 via different methods, Journal of Nanostructures 3, 1–9 (2013).
[13]A Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode., Nature 238, 37–38 (1972).
[14]A. Kudo, Photocatalyst materials for water splitting, Catalysis Surveys from Asia 7, 31–38 (2003).
[15]M. A. Fox and M. T. Dulay, Heterogeneous photocatalysis, Chemical Reviews 93, 341–357 (1993).
[16]H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, Nano-photocatalytic materials: possibilities and challenges, Advanced Materials 24, 229–251 (2012).
[17]A. Giwa, Photocatalytic decolourization and degradation of c. i. basic blue 41 using TiO2 nanoparticles, Journal of Environmental Protection 03, 1063–1069 (2012).
[18]J. Yang, D. Wang, H. Han, and C. Li, Roles of cocatalysts in photocatalysis and photoelectrocatalysis, Accounts of Chemical Research 46, 1900–1909 (2013).
[19]X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, and Y. Zhu, Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization, Langmuir 29, 3097–3105 (2013).
[20]M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemannt, Environmental applications of semiconductor photocatalysis, Chemical Reviews 95, 69–96 (1995).
[21]Gupta S M, Tripathi M. 'A review of TiO2 nanoparticles,' Chinese Sci Bull 56, 1639−1657 (2011).
[22]A. Mills and S. Le Hunte, An overview of semiconductor photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry 108, 1–35 (1997).
[23]D. W. Bahnemann, C. Kormann, and M. R. Hoffmann, Preparation and characterization of quantum size zinc oxide: a detailed spectroscopic study, The Journal of Physical Chemistry 91, 3789–3798 (1987).
[24]K. Sivula, F. Le Formal, and M. Gr??tzel, Wo3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach, , Chemistry of Materials, 21, . 2862–2867 , 2009.
[25]T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura, Preparation of s-doped TiO2 photocatalysts and their photocatalytic activities under visible light, Applied Catalysis A: General 265, 115–121 (2004).
[26]G. Guerrero, P. H. Mutin, and A. Vioux, Anchoring of phosphonate and phosphinate coupling molecules on titania particles, Chemistry of Materials 13, 4367–4373 (2001).
[27] T. Lopes, L. Andrade, H. A. Ribeiro, A. Mendes, Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy, International journal of hydrogen energy 35, 11601-11608 (2010).
[28]M. Gratzel, Photoelectrochemical cells, Nature 414, 338–344 (2001).
[29]T. Bak, J. Nowotny, M. Rekas, and C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. materials-related aspects, International Journal of Hydrogen Energy 27, 991–1022 (2002).
[30]M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Solar water splitting cells., Chemical Reviews (Washington, DC, United States) 110, 6446–6473 (2010).
[31]L. Fornarini, A. J. Nozik, and B. A. Parkinson, The energetics of p/n photoelectrolysis cells, The Journal of Physical Chemistry 88, 3238–3243 (1984).
[32]F. D. Brandão, M. V. B. Pinheiro, G. M. Ribeiro, G. Medeiros-Ribeiro, and K. Krambrock, Identification of two light-induced charge states of the oxygen vacancy in single-crystalline rutile TiO2, Phys. Rev. B 80, 235204-235211 (2009).
[33]G. S. Herman, Y. Gao, T. T. Tran, and J. Osterwalder, X-ray photoelectron diffraction study of an anatase thin film: TiO2(001), Surface Science 447, 201–211 (2000).
[34]D.-H. Lee, J.-G. Park, K. Jin Choi, H.-J. Choi, and D.-W. Kim, Preparation of brookite-type TiO2/carbon nanocomposite electrodes for application to li ion batteries, European Journal of Inorganic Chemistry 2008, 878–882 (2008).
[35]U. Diebold, The surface science of titanium dioxide, 48, 53-229 (2003).
[36]D. A. H. Hanaor and C. C. Sorrell, Review of the anatase to rutile phase transformation, Journal of Materials Science 46, 855–874 (2011).
[37]H. Zhang and J. F. Banfield, Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2, The Journal of Physical Chemistry B 104, 3481–3487 (2000).
[38]Y. Qiu, K. Nasu, and C. Q. Wu, Sextic anharmonicity and ferroelectricity in photoexcited SrTiO3 at low temperatures, New Journal of Physics 9, 1-8 (2007).
[39]A. L. Linsebigler, A. L. Linsebigler, J. T. Yates Jr, G. Lu, G. Lu, and J. T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical Reviews 95, 735–758 (1995).
[40]L. Zhang, H. Ji, Y. Lei, and W. Xiao, Oxygen adsorption on anatase surfaces and edges, Applied Surface Science 257, 8402–8408 (2011).
[41]B. B. Lakshmi, C. J. Patrissi, and C. R. Martin, Sol−gel template synthesis of semiconductor oxide micro- and nanostructures, Chemistry of Materials 9, 2544–2550 (1997).
[42]T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Formation of titanium oxide nanotube, Langmuir 14, 3160–3163 (1998).
[43]Y. Lei, L. D. Zhang, G. W. Meng, G. H. Li, X. Y. Zhang, C. H. Liang, W. Chen, and S. X. Wang, Preparation and photoluminescence of highly ordered TiO2 nanowire arrays, Applied Physics Letters 78, 1125–1127 (2001).
[44]J. Lee, T. G. Kim, H. Choi, and Y. Sung, Enhanced photochemical response of TiO2/CdSe heterostructured & design, American Chemical Society 7, 2588-2593 (2007).
[45]H. Yoshitake, T. Sugihara, and T. Tatsumi, Preparation of wormhole-like mesoporous TiO2 with an extremely large surface area and stabilization of its surface by chemical vapor deposition, Society 14, 1023–1029 (2002).
[46]L. Gonz, G. Lozano, and A. Barranco, TiO2–SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition, Journal of Materials Chemistry 20, 6408–6412 (2010).
[47]P. Löbl, M. Huppertz, and D. Mergel, Nucleation and growth in TiO2 films prepared by sputtering and evaporation, Thin Solid Films 251, 72–79 (1994).
[48]A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays, Small 5, 104–111 (2009).
[49]J. Jiu, S. Isoda, F. Wang, and M. Adachi, Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film, Journal of Physical Chemistry B 110, 2087–2092 (2006).
[50]S. H. Kang, S.-H. Choi, M.-S. Kang, J.-Y. Kim, H.-S. Kim, T. Hyeon, and Y.-E. Sung, Nanorod-based dye-sensitized solar cells with improved charge collection efficiency, Advanced Materials 20, 54–58 (2008).
[51]H. Kim and B. L. Yang, Effect of seed layers on TiO2 nanorod growth on fto for solar hydrogen generation, International Journal of Hydrogen Energy 40, 5807–5814 (2015).
[52]M. Y. Liao, L. Fang, C. L. Xu, F. Wu, Q. L. Huang, and M. Saleem, Effect of seed layer on the growth of rutile TiO2 nanorod arrays and their performance in dye-sensitized solar cells, Materials Science in Semiconductor Processing 24, 1–8 (2014).
[53]K. Choy, Chemical vapour deposition of coatings, Progress in Materials Science 48, 57–170 (2003).
[54]A. Mubarak, E. Hamzah, and M. R. M. Toff, Review of physical vapour deposition (PVD) techniques for hard coating, Jurnal Mekanikal 20, 42–51 (2005).
[55]W. L. Suchanek and R. E. Riman, Hydrothermal synthesis of advanced ceramic powders, Advances in Science and Technology 45, 184–193 (2006).
[56]K. Byrappa and T. Adschiri, Hydrothermal technology for nanotechnology, Progress in Crystal Growth and Characterization of Materials 53, 117–166 (2007).
[57]U. C. Ahamefula, Z. Ibarahim, and M. Y. Othman, Malaysian journal of fundamental & applied sciences hydrothermally synthesized cadmium selenide quantum dot for solar cell, 8, 143–148 (2012).
[58]K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology, (2001).
[59]J. N. Nian and H. Teng, Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor, Journal of Physical Chemistry B 110, 4193–4198 (2006).
[60]M. Guo, P. Diao, X. Wang, and S. Cai, The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of zno nanorod array films, Journal of Solid State Chemistry 178, 3210–3215 (2005).
[61]Y. Li, J. Liu, X. Huang, and G. Li, Hydrothermal synthesis of bi2wo6 uniform hierarchical microspheres, Crystal Growth & Design 7, 1350–1355 (2007).
[62]B. Liu and E. S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells, Journal of the American Chemical Society 131, 3985–3990 (2009).
[63]M. Yoshimura and K. Byrappa, Hydrothermal processing of materials: past, present and future, Journal of Materials Science 43, 2085–2103 (2008).
[64]K. S. Suslick, Sonochemistry, , Kirk-Othmer Encyclopedia of Chemical Tecnology. 14, 516–541 (1998).
[65]H. Cheng, J. Ma, Z. Zhao, and L. Qi, Hydrothermal preparation of uniform nanosize rutile and anatase particles, Chemistry of Materials 7, 663–671 (1995).
[66]M. Iraj, F. D. Nayeri, E. Asl-Soleimani, and K. Narimani, Controlled growth of vertically aligned TiO2 nanorod arrays using the improved hydrothermal method and their application to dye-sensitized solar cells, Journal of Alloys and Compounds 659, 44–50 (2016).
[67]X. H. Xia, Y. Liang, Z. Wang, J. Fan, Y. S. Luo, and Z. J. Jia, Synthesis and photocatalytic properties of TiO2 nanostructures, Materials Research Bulletin 43, 2187–2195 (2008).
[68]H.-E. Wang, Z. Chen, Y. H. Leung, C. Luan, C. Liu, Y. Tang, C. Yan, W. Zhang, J. A. Zapien, I. Bello, and S.-T. Lee, Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates, Applied Physics Letters 96, 263104 (2010).
[69]J. Nayak, K. Prabakar, J. W. Park, and H. Kim, Electrochimica acta effect of synthesis temperature on structure , optical and photovoltaic properties of TiO2 nanorod thin films, Electrochimica Acta 65, 44–49 (2012).
[70]K. Nakata and A. Fujishima, Journal of photochemistry and photobiology c : photochemistry reviews TiO2 photocatalysis : design and applications, 13, 169–189 (2012).
[71]E. Pelizzetti and C. Minero, Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles, Electrochimica Acta 38, 47–55 (1993).
[72]T. Wu, G. Liu, J. Zhao, H. Hidaka, and N. Serpone, Photoassisted degradation of dye pollutants . v . self-photosensitized oxidative transformation of rhodamine b under visible light irradiation in aqueous TiO2 dispersions, Journal of Physical Chemistry B 102, 5845–5851 (1998).
[73]R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe, Light-induced amphiphilic surfaces, Nature 388, 431–432 (1997).
[74]S. Kim, M. Taya, and C. Xu, Contrast, switching speed, and durability of V2O5–TiO2 film-based electrochromic windows, Journal of The Electrochemical Society 156, 40-45 (2009).
[75]A. G. Dylla, G. Henkelman, and K. J. Stevenson, Lithium insertion in nanostructured TiO2 architectures, Accounts of Chemical Research 46, 1104–1112 (2013).
[76]J. M. Stipkala, F. N. Castellano, T. A. Heimer, C. A. Kelly, K. J. T. Livi, and G. J. Meyer, Light-induced charge separation at sensitized sol−gel processed semiconductors, Chemistry of Materials 9, 2341–2353 (1997).
[77]V. M. Cristante, A. G. S. Prado, S. M. A. Jorge, J. P. S. Valente, A. O. Florentino, and P. M. Padilha, Synthesis and characterization of TiO2 chemically modified by Pd(ii) 2-aminothiazole complex for the photocatalytic degradation of phenol, Journal of Photochemistry and Photobiology A: Chemistry 195, 23–29 (2008).
[78]Q. Wang, M. Zhang, C. Chen, W. Ma, and J. Zhao, Photocatalytic aerobic oxidation of alcohols on TiO2: the acceleration effect of a Bronsted Acid, Angewandte Chemie - International Edition 49, 7976–7979 (2010).
[79]X. Fu, L. A. Clark, W. A. Zeltner, and M. A. Anderson, Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene, Journal of Photochemistry and Photobiology A: Chemistry 97, 181–186 (1996).
[80]B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737–740 (1991).
[81]M. Quintana, T. Edvinsson, A. Hagfeldt, and G. Boschloo, Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime, Journal of Physical Chemistry C 111, 1035–1041 (2007).
[82]M. Grätzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry 164, 3–14 (2004).
[83]U. Kirner, K. D. Schierbaum, W. Göpel, B. Leibold, N. Nicoloso, W. Weppner, D. Fischer, and W. F. Chu, Low and high temperature TiO2 oxygen sensors, Sensors and Actuators B: Chemical 1, 103–107 (1990).
[84]P. K. Dutta, A. Ginwalla, B. Hogg, B. R. Patton, B. Chwieroth, Z. Liang, P. Gouma, M. Mills, and S. Akbar, Interaction of carbon monoxide with anatase surfaces at high temperatures: optimization of a carbon monoxide sensor, The Journal of Physical Chemistry B 103, 4412–4422 (1999).
[85]Y. Xu, K. Yao, X. Zhou, and Q. Cao, Platinum-titania oxygen sensor and their sensing mechanism, 14, 492–494 (1993).
[86]U. Gesenhues, Calcination of metatitanic acid to titanium dioxide white pigments, Chemical Engineering and Technology 24, 685–694 (2001).
[87]S. Farrokhpay, A review of polymeric dispersant stabilisation of titania pigment, Advances in Colloid and Interface Science 151, 24–32 (2009).
[88]A. Fujishima, X. Zhang, and D. A. Tryk, Surface science reports TiO2 photocatalysis and related surface phenomena, 63, 515–582 (2008).
[89]B. Liu, K. Nakata, M. Sakai, H. Saito, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, Mesoporous TiO2 core-shell spheres composed of nanocrystals with exposed high-energy facets: facile synthesis and formation mechanism, Langmuir 27, 8500–8508 (2011).
[90]K. I. Katsumata, S. Okazaki, C. E. J. Cordonier, T. Shichi, T. Sasaki, and A. Fujishima, Preparation and characterization of self-cleaning glass for vehicle with niobia nanosheets, ACS Applied Materials and Interfaces 2, 1236–1241 (2010).
[91]S.-S. Li, C.-P. Chang, C.-C. Lin, Y.-Y. Lin, C.-H. Chang, J.-R. Yang, M.-W. Chu, and C.-W. Chen, Interplay of three-dimensional morphologies and photocarrier dynamics of polymer/ TiO2 bulk heterojunction solar cells, Journal of the American Chemical Society 133, 11614-11620 (2011).
[92]M. A. Green, Third generation photovoltaics: ultra-high conversion efficiency at low cost, Progress in Photovoltaics: Research and Applications 9, 123–135 (2001).
[93]K. Yu and J. Chen, Enhancing solar cell efficiencies through 1-d nanostructures, Nanoscale Research Letters 4, 1–10 (2009).
[94]P. K. Dutta, A. Ginwalla, B. Hogg, B. R. Patton, B. Chwieroth, Z. Liang, P. Gouma, M. Mills, and S. Akbar, Interaction of carbon monoxide with anatase surfaces at high temperatures: optimization of a carbon monoxide sensor, The Journal of Physical Chemistry B 103, 4412–4422 (1999).
[95]K. Marycz, U. Agnieszka, J. Grzesiak, A. S. N, M. Mar, A. Donesz-sikorska, and J. Krzak, The osteogenic properties of multipotent mesenchymal stromal cells in cultures on TiO2 sol-gel-derived biomaterial, 2015, 1-11 (2015).
[96]R. Fujita, M. Sakairi, T. Kikuchi, and S. Nagata, Corrosion resistant TiO2 film formed on magnesium by liquid phase deposition treatment, Electrochimica Acta 56, 7180–7188 (2011).
[97]W. Choi, J. Y. Ko, H. Park, and J. S. Chung, Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone, Applied Catalysis B: Environmental 31, 209–220 (2001).
[98]Y. Wan, J. Ma, W. Zhou, Y. Zhu, X. Song, and H. Li, Preparation of titania-zirconia composite aerogel material by sol-gel combined with supercritical fluid drying, Applied Catalysis A: General 277, 55–59 (2004).
[99]K. Woan, G. Pyrgiotakis, and W. Sigmund, Photocatalytic carbon-nanotube-tio 2 composites, Advanced Materials 21, 2233–2239 (2009).
[100]S. D. Perera, R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K. J. Balkus, Hydrothermal synthesis of graphene- TiO2 nanotube composites with enhanced photocatalytic activity, ACS Catalysis 2, 949–956 (2012).
[101]W. Choi, A. Termin, and M. R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics, Journal of Physical Chemistry 98, 13669–13679 (1994).
[102]V. Subramanian, E. Wolf, and P. V Kamat, Semiconductor-metal composite nanostructures to what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films, Journal of Physical Chemistry B 105, 11439–11446 (2001).
[103]Y. Ao, J. Xu, S. Zhang, and D. Fu, A one-pot method to prepare n-doped titania hollow spheres with high photocatalytic activity under visible light, Applied Surface Science 256, 2754–2758 (2010).
[104]T. He, Y. Cao, X. Hu, H. Liu, G. Zhang, W. Yang, and J. Yao, Photochromism of wo 3 colloids combined with TiO2 nanoparticles, J. Phys. Chem. B 106, 12670–12676 (2002).
[105]C.-Y. Yen, Y.-F. Lin, C.-H. Hung, Y.-H. Tseng, C.-C. M. Ma, M.-C. Chang, and H. Shao, The effects of synthesis procedures on the morphology and photocatalytic activity of multi-walled carbon nanotubes/ TiO2 nanocomposites., Nanotechnology 19, 045604-045615 (2008).
[106]T. N. Lambert, C. a Chavez, B. Hernandez-sanchez, P. Lu, N. S. Bell, A. Ambrosini, T. Friedman, T. J. Boyle, D. R. Wheeler, and D. L. Huber, Synthesis and characterization of titania-graphene nanocomposites, Journal of Physical Chemistry C 113, 19812–19823 (2009).
[107]A. K. Geim and K. S. Novoselov, The rise of graphene., Nat. Mater 6, 183–191 (2007).
[108]I. S. I. Web, S. This, H. Press, M. Science, N. York, and A. Nw, Graphene : status and prospects, Science, 324, 1530-1534 (2014).
[109]C.-T. C. Jianguo Song, Xinzhi Wang, Preparation and characterization of graphene oxide, Journal of Nanomaterials 2014, 1-6 (2014).
[110]D. Chen, H. Feng, and J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications, Chemical Reviews 112, 6027–6053 (2012).
[111]W. Gao, The chemistry of graphene oxide, Graphene Oxide: Reduction Recipes, Spectroscopy, and Applications 61–95 (2015).
[112]S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, Hydrazine-reduction of graphite- and graphene oxide, Carbon 49, 3019–3023 (2011).
[113]H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H. K. Jeong, J. M. Kim, J. Y. Choi, and Y. H. Lee, Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance, Advanced Functional Materials 19, 1987–1992 (2009).
[114]C. Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C. H. Tsai, Y. Huang, and L. J. Li, Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors, ACS Nano 4, 5285–5292 (2010).
[115]P. Wang, J. Wang, X. Wang, H. Yu, J. Yu, M. Lei, and Y. Wang, Applied catalysis b : environmental one-step synthesis of easy-recycling TiO2-rGo nanocomposite photocatalysts with enhanced photocatalytic activity, “Applied Catalysis B, Environmental 132–133, 452–459 (2013).
[116]L. Tan, W. Ong, S. Chai, and A. R. Mohamed, Reduced graphene oxide- TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide, 1–9 (2013).
[117]Y. Yao, G. Li, S. Ciston, R. M. Lueptow, and K. a. Gray, Photoreactive TiO2 /carbon nanotube composites: synthesis and reactivity, Environmental Science & Technology 42, 4952–4957 (2008).
[118]T. H. Muster, A. Trinchi, T. A. Markley, D. Lau, P. Martin, A. Bradbury, A. Bendavid, and S. Dligatch, A review of high throughput and combinatorial electrochemistry, Electrochimica Acta 56, 9679–9699 (2011).
[119]M. J. Fasolka and E. J. Amis, Combinatorial materials science: measures of success, Combinatorial Materials Science 1–20 (2006).
[120]E. Reddington, Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts, Science 280, 1735–1737 (1998).
[121]A. Bard, H. C. Lee, K. Leonard, H. S. Park, and S. Wang, Rapid screening methods in the discovery and investigation of new photocatalyst compositions., RSC Energy and Environment Series 9, 132–153 (2013).
[122]N. M. Nursam, X. Wang, and R. A. Caruso, High-throughput synthesis and screening of titania-based photocatalysts, ACS Combinatorial Science 17, 548–569 (2015).
[123]M. Woodhouse and B. A. Parkinson, Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis, Chem Soc Rev 38, 197–210 (2009).
[124]A. D. Spong, G. Vitins, S. Guerin, B. E. Hayden, A. E. Russell, and J. R. Owen, Combinatorial arrays and parallel screening for positive electrode discovery, Journal of Power Sources 119–121, 778–783 (2003).
[125]K. Itaka, H. Minami, H. Kawaji, Q. Wang, J. Nishii, M. Kawasaki, and H. Koinuma, High-speed evaluation of thermoelectric materials using multi-channel measurement system, Journal of Thermal Analysis and Calorimetry 69, 1051–1058 (2002).
[126]E. Danielson, J. Golden, and E. McFarland, A combinatorial approach to the discovery and optimization of luminescent materials, Nature 389, 2331–2333 (1997).
[127]K. Hasegawa, P. Ahmet, N. Okazaki, T. Hasegawa, K. Fujimoto, M. Watanabe, T. Chikyow, and H. Koinuma, Amorphous stability of hfo2 based ternary and binary composition spread oxide films as alternative gate dielectrics, Applied Surface Science 223, 229–232 (2004).
[128]S. Fujino, M. Murakami, V. Anbusathaiah, S. H. Lim, V. Nagarajan, C. J. Fennie, M. Wuttig, L. Salamanca-Riba, and I. Takeuchi, Combinatorial discovery of a lead-free morphotropic phase boundary in a thin-film piezoelectric perovskite, Applied Physics Letters 92, 1–4 (2008).
[129]J. He, S. Xu, Y. K. Yoo, Q. Xue, H. C. Lee, S. Cheng, X. D. Xiang, G. F. Dionne, and I. Takeuchi, Room temperature ferromagnetic n-type semiconductor in (in 1-xfex)2o3-??, Applied Physics Letters 86, 1–3 (2005).
[130]D. Stamopoulos, M. Pissas, and E. Manios, Ferromagnetic-superconducting hybrid films and their possible applications: a direct study in a model combinatorial film, Physical Review B - Condensed Matter and Materials Physics 71, 1–6 (2005).
[131]Y. Liu, C. Li, J. Wang, X. Fan, G. Yuan, S. Xu, M. Xu, J. Zhang, and Y. Zhao, Field emission properties of zno nanorod arrays by few seed layers assisted growth, Applied Surface Science 331, 497–503 (2015).
[132]W. S. Hummers and R. E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society 80, 1339 (1958).
[133]J. Yan, G. Wu, N. Guan, L. Li, Z. Li, and X. Cao, Understanding the effect of surface/bulk defects on the photocatalytic activity of tio2: anatase versus rutile, Physical Chemistry Chemical Physics 15, 10978-10988 (2013).

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔