跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/15 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:阿芬朵維
研究生(外文):Devi Eka SeptiyaniArifin
論文名稱:聚氟乙烯共聚物晶相結構轉變機制之探討
論文名稱(外文):Study on the Curie Transition of P(VDF-TrFE) Copolymer
指導教授:阮至正
指導教授(外文):Jr-Jeng Ruan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:70
中文關鍵詞:curie相轉變板晶彎折侷限效應
外文關鍵詞:Curie transitionlamellar bendingconfinement effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二氟乙烯與三氟乙烯的共聚物(poly(vinylidene fluoride trifluoroethylene) P(VDF-TrFE))的晶相在常溫下,具有高分子晶相罕見的壓電性質(piezoelectric property)。這個研究主要藉由系統性的探索升降溫過程晶相結構的演變,來進一步釐清curie相轉變的機制。在此共聚物的晶相中,由於氟原子均排列在分子鏈的同一側, 而電負性較低的氫原子排列在另外一側。這樣的晶相排列,造成一有方向性的偶極距,使得這個晶相具有極性。但是由於氟原子佔有體積較大,因此隨著溫度上升,氟原子之間的互斥會使得這樣的排列方式變得不穩定,而發生curie相轉變,分子鏈段可以藉由熱運動而有一定程度的扭曲與旋轉,使得氟原子可以分佈在分子鏈的兩側。由在升溫過程所獲得的x-ray繞射曲線以及吸放熱曲線,curie相轉變的過程牽涉兩個不同層面的晶格排列演變。首先伴隨著溫度上升,晶格的膨脹以及分子鏈構型(conformation)的改變會先發生,然後才伴隨著鏈段的旋轉與扭曲。這個分子鏈段的旋轉,是plastic crystal的主要特徵。伴隨著晶格的演變,我們也觀察到板晶排列規則性的改變,因此推論可能發生板晶微幅的彎折。而板晶彎折的現象,會隨著降溫而恢復。當此共聚物的板晶堆疊於聚二氟乙烯的板晶之間時,伴隨著的侷限效應(confinement effect)會使得板晶的彎折受到限制,因此有部分的板晶無法經歷curie相轉變。以上的研究成果不僅對curie相轉變的機制提出進一步的論述,並首次指出curie相轉變的發生會伴隨著板晶堆疊有序性的改變。
A systematic study was carried out to decipher the mechanism of Curie transition of piezoelectric crystals of poly(vinylidene fluoride trifluoroethylene) P(VDF-TrFE). The unique polarity of P(VDF-TrFE) crystalline phase below curie transition temperature is attributed to the lattice packing of all-trans molecular chains, which allocates all the substituted fluorine atoms on one side of molecular chains and hydrogen atoms on the other side. Therefore a net dipole moment is created across the lateral packing of molecular chains. Nevertheless, due to the mutual repulsion among fluorene atoms, this all-trans conformation is not stable, and ready to change above Curie temperature, where thermal kinetic energy is sufficient to cause segmental rotation. As being illustrated by in-situ recorded X-ray diffraction and thermal analysis, the concerned curie transition is deciphered as a two-step process different from conventional one-step solid-solid transitions. The lattice expansion and change of molecular conformation are derived to take place first and appears as a progressive process, which is followed by the thermal axial rotation of molecular stems within lattice packing. This thermal axial rotation of molecular stems is similar to what has been found in plastic crystals. Accompanied with this two-step process during heating, the occurrence of lamellar bending is inferred for elucidating the decline of stacking regularity of crystalline lamellae, which reversibly recover during subsequent cooling. However, as the crystalline lamellae of P(VDF-TrFE) are confined in between the stacking of crystalline lamellae of PVDF, lamellar bending is restricted accordingly. As a result, a certain fraction of the piezoelectric crystalline lamellae were found to survive through the Curie transition. Thus, in addition to the suggestion of a two-step process as a new concept for understanding the Curie transition, the relationship between the lamellar stacking and transition of molecular packing is unveiled as well in this research.
TABLE OF CONTENTS

ACKNOWLEDGEMENT i
ABSTRACT (CHINESE) ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES xii
CHAPTER 1 INTRODUCTION 1
1.1 Preface 1
1.1.1 Characteristics of Phase Transitions 1
1.1.2 Molecular Structure and Crystal Stability 1
1.2 Research Objective and Motivation 2
CHAPTER 2 LITERATURE SURVEY 4
2.1 Structural Background of Ferroelectric Materials 4
2.1.2 Curie Temperature and Curie Transition 5
2.2 Basic properties of PVDF and its co-polymer P(VDF-TrFE) 5
2.2.1 Polyvinylidene fluoride (PVDF) 5
2.2.2 Poly(vinylidene fluoride trifluoroethylene) P(VDF-TrFE) 8
2.2.3 Ferroelectric to Paraelectric Transition in P(VDF-TrFE) 13
2.2.4 Structural Phase Transition observed by Infrared Spectroscopy 14
2.3 Epitaxial Crystallization 20
2.3.1 Epitaxial Crystallization of P(VDF-TrFE) 21
CHAPTER 3 EXPERIMENTAL SECTION 23
3.1 Materials 23
3.2 Sample preparation 23
3.3 Characterization 24
3.3.1 Differential Scanning Calorimetry (DSC) 24
3.3.2 2D X-Ray Diffractometer (2D XRD) 24
3.3.3 Transmission Electron Microscopy (TEM) 25
3.3.4 Small Angle X-Ray Scattering (SAXS) 26
CHAPTER 4 RESULTS AND DISCUSSION 27
4.1 Mechanism of Curie Transition of P(VDF-TrFE) 27
4.1.1 The influence of Curie transition on the evolution of lamellar stacking 34
4.2 Confinement Effect on the Melting of P(VDF-TrFE) Crystals in Binary Mixtures 42
4.2.1 Phase stability of binary mixtures of PVDF/P(VDF-TrFE) 43
4.2.2 The influence of Curie transition on the evolution of lamellar stacking PVDF/P(VDF-TrFE) 46
4.3 Curie Transition of Binary Mixtures P(VDF-TrFE) /HMB 50
4.3.1 Epitaxial organization of P(VDF-TrFE) on HMB 57
CHAPTER 5 CONCLUSIONS 59
REFERENCES 60
APPENDIX 66
[1]J. William D. Callister, Materials science and engineering-An Introduction, 7th ed, USA : John Wiley & Sons, Inc, 2007.
[2]G. Teyssedre, A. Bernes, and C. Lacabanne, Cooperative movements associated with the Curie transition in P (VDF‐TrFE) copolymers, Journal of Polymer Science Part B: Polymer Physics, vol. 33, pp. 879-890, 1995.
[3]I. Mayergoyz and G. Bertott, Hysteresis in Piezoelectric and Ferroelectric Materials, The Science of Hysteresis, vol. 3, pp. 338-465, 2005.
[4]P. Dobis, J. Bruestlova, and M. Bartlova, Curie Temperature in Ferromagnetic Materials and Visualized Magnetic Domains, 3rd International Symposium for Engineering Education, University College Cork, Ireland, 2010.
[5]B. P. Neese, Investigations of Structure-Property Relationships to Enhance The Multifunctional Properties of PVDF-Based Polymers, Doctor of Philosphy, Materials Science and Engineering, The Pennsylvania State University, United State, 2009.
[6]L. B. Kong, T. Li, H. H. Hng, F. Boey, T. Zhang, and S. Li, Waste Mechanical Energy Harvesting (I): Piezoelectric Effect, vol. 24, pp. 19-133, 2014.
[7]T. R. Dargaville, M. C. Celina, J. M. Elliott, P. M. Chaplya, G. D. Jones, D. M. Mowery, et al., Characterization, performance and optimization of PVDF as a piezoelectric film for advanced space mirror concepts, Sandia National Laboratories, California, 2005.
[8]Z. Cui, N. T. Hassankiadeh, S. Y. Lee, J. M. Lee, K. T. Woo, A. Sanguineti, et al., Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation, Journal of Membrane Science, vol. 444, pp. 223-236, 2013.
[9]D. M. Esterly, Manufacturing of Poly(vinylidene fluoride) and Evaluation of its Mechanical Properties, Masters of Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2002.
[10]A. Omar, Processing, Morphology and Product Parameters of PVDF Filaments For Biomedical Applications, Master, Institut für Textiltechnik, Rheinisch - Westfälische Technische Hochschule Aachen (RWTH), Aachen, Germany, 2008.
[11]T. Furukawa, Ferroelectric properties of vinylidene fluoride copolymers, Phase Transitions, vol. 18, pp. 143-211,1989.
[12]A. J. Hopfinger, Conformational Properties of Macromolecules, New York : Academic Press, Inc, 1973.
[13]M. Bai, X. Li, and S. Ducharme, Electron diffraction study of the structure of vinylidene fluoride–trifluoroethylene copolymer nanocrystals, Journal of Physics: Condensed Matter, vol. 19, p. 196211, 2007.
[14]R. Ulrich, L. Schaper, D. Nelms, and M. Leftwich, Comparison of Paraeletric and Ferroelectric Materials For Applications as Dielectrics in Thin film Integrated Capacitors, International Journal of Microcircuits and Electronic Packaging, vol. 23, pp. 172-181, 2000.
[15]B. Farmer, A. Hopfinger, and J. Lando, Polymorphism of poly (vinylidene fluoride): potential energy calculations of the effects of head‐to‐head units on the chain conformation and packing of poly (vinylidene fluoride), Journal of Applied Physics, vol. 43, pp. 4293-4303, 1972.
[16]K. Tashiro and R. Tanaka, Structural correlation between crystal lattice and lamellar morphology in the ferroelectric phase transition of vinylidene fluoride–trifluoroethylene copolymers as revealed by the simultaneous measurements of wide-angle and small-angle X-ray scatterings, Polymer, vol. 47, pp. 5433-5444, 2006.
[17]R. Tanaka, K. Tashiro, and M. Kobayashi, Annealing effect on the ferroelectric phase transition behavior and domain structure of vinylidene fluoride (VDF)–trifluoroethylene copolymers : a comparison between uniaxially oriented VDF 73 and 65% copolymers, polymer, vol. 40, pp. 3855–3865, 1999.
[18]K. Tashiro and H. Hama, Structural changes in isothermal crystallization processes of synthetic polymers studied by time-resolved measurements of synchrotron-sourced X-ray scatterings and vibrational spectra, Macromolecular research, vol. 12, pp. 1-10, 2004.
[19]R. Gregorio and M. M. Botta, Effect of crystallization temperature on the phase transitions of P (VDF/TrFE) copolymers, Journal of Polymer Science-B-Polymer Physics Edition, vol. 36, pp. 403-414, 1998.
[20]K. Tashiro, Y. Itoh, S. Nishimura, and M. Kobayashi, Vibrational spectroscopic study on ferroelectric phase transition of vinylidene fluoride-trifluoroethylene copolymers: 2. Temperature dependences of the far-infrared absorption spectra and ultrasonic velocity, Polymer, vol. 32, pp. 1017-1026, 1991.
[21]K. Tashiro, K. Takano, M. Kobayashi, Y. Chatani, and H. Tadokoro, Structure and ferroelectric phase transition of vinylidene fluoride-trifluoroethylene copolymers: 2. VDF 55% copolymer, Polymer, vol. 25, pp. 195-208, 1984.
[22]K. Tashiro and M. Kobayashi, Structural study of the ferroelectric phase transition of vinylidene fluoride-trifluoroethylene copolymers: 4. Poling effect on structure and phase transition, Polymer, vol. 27, pp. 667-676, 1986.
[23]K. J. Kim, G. B. Kim, C. L. Vanlencia, and J. F. Rabolt, Curie transition, ferroelectric crystal structure, and ferroelectricity of a VDF/TrFE (75/25) copolymer 1. The effect of the consecutive annealing in the ferroelectric state on curie transition and ferroelectric crystal structure, Journal of Polymer Science Part B: Polymer Physics, vol. 32, pp. 2435-2444, 1994.
[24]H. S. Nalwa, Ferroelectric Polymers - Chemistry, Physics, and Applications, New York : Marcel Dekker, Inc, 1995.
[25]Y. Abe and K. Tashiro, Computer simulation of structure and ferroelectric phase transition of vinylidene fluoride copolymers. 5. Influence of orientational disorder of dipole moments and domain walls on phase transitional behavior, Polymer, vol. 42, pp. 9671-9678, 2001.
[26]Y. Abe, K. Tashiro, and M. Kobayashi, Computer simulation of structural changes in the ferroelectric phase transition of vinylidene fluoride–trifluoroethylene copolymers, Computational and Theoretical Polymer Science, vol. 10, pp. 323-333, 2000.
[27]K. T. Y. Abe, Computer Simulation of Structure and Ferroelectric Phase Transition of Vinylidene Fluoride Copolymers. IV. The Factors Governing the Ferroelectric Phase Transition of VDF–TrFE Copolymers, 2000.
[28]T. Koda, K. Shibasaki, and S. Ikeda, Monte Carlo simulation of polarization reversal of ferroelectric polymer polyvinylidene fluoride, Computational and Theoretical Polymer Science, vol. 10, pp. 335-343, 2000.
[29]A. J. Lovinger, T. Furukawa, G. Davis, and M. Broadhurst, Crystallographic changes characterizing the Curie transition in three ferroelectric copolymers of vinylidene fluoride and trifluoroethylene: 2. Oriented or poled samples, Polymer, vol. 24, pp. 1233-1239, 1983.
[30]J. Ngoma, J. Cavaille, J. Paletto, and J. Perez, Curie transition study in a 7030mol% copolymer of vinylidene fluoride and trifluoroethylene by mechanical spectrometry, Polymer, vol. 32, pp. 1044-1048, 1991.
[31]K. Tashiro, K. Takano, M. Kobayashi, Y. Chatani, and H. Tadokoro, Phase transition at a temperature immediately below the melting point of poly (vinylidene fluoride) from I: A proposition for the ferroelectric Curie point, Polymer, vol. 24, pp. 199-204, 1983.
[32]K. Tashiro, K. Takano, M. Kobayashi, Y. Chatani, and H. Tadokoro, Structural study on ferroelectric phase transition of vinylidene fluoride-trifluoroethylene copolymers (III) dependence of transitional behavior on VDF molar content, Ferroelectrics, vol. 57, pp. 297-326, 1984.
[33]A. A. Prabu, J. S. Lee, K. J. Kim, and H. S. Lee, Infrared spectroscopic studies on crystallization and Curie transition behavior of ultrathin films of P(VDF/TrFE) (72/28), Vibrational Spectroscopy, vol. 41, pp. 1-13, 2006.
[34]M. Bai, M. Poulsen, A. Sorokin, S. Ducharme, C. Herzinger, and V. Fridkin, Infrared spectroscopic ellipsometry study of vinylidene fluoride (70%)-trifluoroethylene (30%) copolymer Langmuir–Blodgett films, Journal of applied physics, vol. 94, pp. 195-200, 2003.
[35]P. Martins, A. C. Lopes, and S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications, Progress in Polymer Science, vol. 39, pp. 683-706, 2014.
[36]S. Lanceros-Mendez, J. F. Mano, A. M. Costa, and V. H. Schmidt, FTIR and DSC Studies Of Mechanically Deformed β-PVDF Films, J. Macromol. Sci.—Physics, vol. 3&4, pp. 517-527, 2001.
[37]L. O. Faria and R. L. Moreira, Infrared Spectroscopic Investigation of Chain Conformations and Interactions in P(VDF-TrFE)/PMMA Blends, Journal of Polymer Science, vol. 38, pp 34-40, 2000.
[38]D. Mandal, Ultra-thin Films of a Ferroelectric Copolymer: P(VDF-TrFE), Master of Science in Physics, Fakultät für Mathematik, Naturwissenschaften und Informatik, Brandenburgische Technische Universität Cottbus, Germany, 2008.
[39]K. Tashiro and M. Kobayashi, Structural phase transition in ferroelectric fluorine polymers: X-ray diffraction and infrared/Raman spectroscopic study, Phase Transitions: A Multinational Journal, vol. 18, pp. 213-246, 1989.
[40]R. I. Mahdi, W. C. Gan, and W. H. Abd Majid, Hot plate annealing at a low temperature of a thin ferroelectric P(VDF-TrFE) film with an improved crystalline structure for sensors and actuators, Sensors (Basel), vol. 14, pp. 19115-27, 2014.
[41]H. Li and S. Yan, Surface-Induced Polymer Crystallization and the Resultant Structures and Morphologies, Macromolecules, vol. 44, pp. 417-428, 2011.
[42]Y. J. Park, A. Thierry, S. J. Kang, K. J. Kim, C. Park, B. Lotz, et al., Ordered Ferroelectric PVDF-TrFE Thin Films by High Throughput Epitaxy for Nonvolatile Polymer Memory, Macromolecular, vol. 41, pp. 8648-8654, 2008.
[43]L. Cai, H. Qu, C. Lu, S. Ducharme, P. A. Dowben, and J. Zhang, Surface structure of ultrathin copolymer films of ferroelectric vinylidene fluoride (70%) with trifluoroethylene (30%) on graphite, Physical Review B, vol. 70, p. 155411, 2004.
[44]R. M. Saeed, J. Schlegel, C. Castano, and R. Sawafta, Uncertainty of Thermal Characterization of Phase Change Material by Differential Scanning Calorimetry Analysis, International Journal of Engineering Research & Technology (IJERT), vol. 5, pp. 405-412, 2016.
[45]K.-L. Tseng, J. Ruan, Y.-K. Lan, W.-Z. Wang, and A.-C. Su, Sequential Epitaxial Organization of Poly(9,9-di-n-octyl-2,7-fluorene) in an Eutectic System, Macromolecules, vol. 46, pp. 1820-1831, 2013.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top