(3.92.96.236) 您好!臺灣時間:2021/05/07 15:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡雅涵
研究生(外文):Ya-HanTsai
論文名稱:不同氣氛與銪摻雜對鉍銅硒氧熱電性質之影響
論文名稱(外文):Effects of Different Atmospheres and Eu Doping on the Thermoelectric Properties of BiCuSeO
指導教授:齊孝定
指導教授(外文):Xiao-Ding Qi
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:120
中文關鍵詞:熱電材料BiCuSeO銪摻雜合成氣氛
外文關鍵詞:thermoelectricBiCuSeOSeebeckelectrical conductivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:68
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的主軸為氧化物熱電材料-鉍銅硒氧(BiCuSeO),BiCuSeO屬於p型半導體,因其特殊的層狀結構,具有本質低的熱傳導率和高席貝克係數,是近來新興的氧化物熱電材料。但是相對於傳統的合金熱電材料而言,其導電率偏低,有待改善,通常可藉由合理的調控,例如摻雜低價數離子取代鉍(Bi3+)引入電洞,藉此提高導電率,進而提升熱電優值(ZT)。因此本研究的其中一部分即是藉由摻雜Eu2+來探討其對BiCuSeO的影響。另外,於今年(2016)有研究指出BiCuSeO並非典型的離子化合物,各個元素不是以單一價態存在,有變價現象,而合成氣氛對元素價態影響甚大,故本研究的另一部分試圖探討不同氣氛對合成BiCuSeO及其性質之影響。
論文內容將分為兩個部份,分別探討不同合成氣氛與不同銪摻雜量對BiCuSeO的影響。實驗上皆以固相反應法合成BiCuSeO樣品,再進行各項材料分析,包含XRD、SEM、EBSD、TEM、DSC、密度量測、席貝克係數、霍爾量測、導電率、熱傳導率、熱電優值等性質分析。
實驗結果顯示,在100ppm O2-Ar、Ar、3% H2-Ar三種不同氣氛條件下均可藉由固相反應法在800°C下合成BiCuSeO之純相,但Rietveld晶體結構分析發現三組樣品的氧位置佔有率不同,依序為1.12、1.01、0.69,而晶格常數也有變化,大小次序恰與其相反。在不同氣氛下合成的BiCuSeO席貝克係數皆為正值,屬於p型材料,席貝克係數大小依序為Ar組 〉 100ppm O2-Ar組 〉 3% H2-Ar組。三組樣品導電率在室溫以上皆隨溫度上升而下降,屬於金屬型導電特性,導電率大小依序為3% H2-Ar組 〉 100ppm O2-Ar組 〉 Ar組,但當溫度低於213K,在Ar氣氛合成之樣品其導電率隨溫度上升而上升,屬半導體型導電特性。
Bi1-xEuxCuSeO(x=0, 0.05, 0.10, 0.15)均可藉由固相反應法在750°C下合成,樣品皆呈現單一純相,摻雜量可達15%仍未超出固溶極限。晶格常數隨摻雜量增加而上升,可間接證明Eu已摻雜進入主體晶格中。摻雜Eu之樣品席貝克係數仍為正值,沒有改變p型屬性,但席貝克係數隨摻雜量增加而下降。摻雜Eu樣品的導電率在測量溫度範圍(約300~700K)內皆隨溫度上升而下降,屬於金屬型導電特性,其導電率大小隨摻雜量增加而上升。

In this work, the effects of oxygen partial pressure and Eu doping on the phase formation and the electrical and thermoelectric properties of BiCuSeO were studied. The undoped samples were sintered at 800 °C in different atmospheres, including 100ppm O2 Ar, Ar, and 3% H2 Ar. Although the BiCuSeO phase could be obtained under all three ambiences, the Rietveld structural analyses showed that the oxygen site occupancy in the obtained phase was 1.12, 1.09, and 0.69, respectively. The lattice constants of the samples were increased as the oxygen deficiency increased. All the samples showed a positive Seebeck coefficient, indicating a p-type electrical conductivity. The samples sintered in Ar had the largest Seebeck coefficient while those sintered in 3% H2-Ar had the lowest one. The values of the electrical conductivity of the samples sintered in different ambiences displayed an opposite order as that of Seebeck coefficients. Above room temperature (RT), all three groups of samples showed a metallic electrical conductivity. However, below 213 K the electric conductivity of the samples sintered in Ar showed a semiconductor behaviour. Bi1-xEuxCuSeO (x=0-0.15) samples of a pure phase were sintered in Ar at 750°C. The lattice constants increased as the Eu doping increased, indicating that the Eu2+ ions were indeed entered the crystal lattice. The Seebeck coefficients of the Eu doped samples remained positive but the values decreased. Over the entire measured temperature range (300-700K), the electrical conductivity of the Eu doped samples decreased as the temperature increased, i.e. a metallic electrical conductivity behavior.
摘要 I
Abstract III
誌謝 IX
目錄 X
表目錄 XIV
圖目錄 XV
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目標 5
第二章 理論基礎與文獻回顧 7
2.1 熱電效應的理論基礎[9-11] 7
2.1.1 席貝克效應(Seebeck Effect) 9
2.1.2 帕爾帖效應(Peltier Effect) 12
2.1.3 湯木森效應(Thomson Effect) 14
2.2 熱電優值與熱電功率因子[9, 12, 13] 18
2.2.1 席貝克係數 21
2.2.2 導電率 23
2.2.3 熱傳導率 25
2.3 熱電轉換效率的優化[9, 14] 27
2.3.1 載子濃度對熱電性質的影響 28
2.3.2 聲子對熱電性質的影響 30
2.4 鉍銅硒氧熱電材料 32
2.4.1 鉍銅硒氧之基本性質與結構探討 32
2.4.2 鉍銅硒氧之文獻回顧 34
第三章 實驗方法與步驟 40
3.1 實驗流程 40
3.1.1 在不同氣氛下以固相反應法合成BiCuSeO 40
3.1.2 固相反應法合成Bi1-xEuxCuSeO(x=0, 0.05, 0.10, 0.15) 44
3.2 材料性質分析方法及設備簡介 47
3.2.1 X光繞射儀(XRD) 47
3.2.2 掃描式電子顯微鏡(SEM) 49
3.2.3 阿基米德法 50
3.2.4 背向散射電子繞射儀(EBSD) 51
3.2.5 穿透式電子顯微鏡(TEM) 52
3.2.6 示差掃描熱分析儀(DSC) 53
3.2.7 席貝克係數量測系統 54
3.2.8 霍爾量測系統 55
3.2.9 導電率-溫度量測系統 56
3.2.10 熱傳導率量測 57
第四章 結果與討論 58
4.1 合成氣氛對BiCuSeO之影響 58
4.1.1 以XRD進行相鑑定並分析晶粒大小與晶格常數 59
4.1.2 表面形貌與密度分析 66
4.1.3 以EBSD觀察晶粒取向分佈 70
4.1.4 以TEM進行微觀分析 73
4.1.5 以DSC分析熱穩定性 75
4.1.6 席貝克係數分析與霍爾量測結果 78
4.1.7 導電率量測結果 81
4.1.8 熱傳導率量測結果 83
4.1.9 熱電優值計算結果 85
4.2 銪摻雜對BiCuSeO之影響 88
4.2.1 以XRD進行相鑑定並分析晶粒大小與晶格常數 89
4.2.2 表面形貌與密度分析 96
4.2.3 以TEM進行微觀分析 99
4.2.4 席貝克係數分析與霍爾量測結果 101
4.2.5 導電率量測結果 104
4.2.6 熱傳導率量測結果 108
4.2.7 熱電優值計算結果 110
第五章 結論 113
參考文獻 115


1.Venkatasubramanian, R., E. Siivola, T. Colpitts, and B. O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 2001. 413(6856): p. 597-602.
2.Terasaki, I., Y. Sasago, and K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals. Physical Review B, 1997. 56(20): p. R12685-R12687.
3.Nagira, T., M. Ito, S. Katsuyama, K. Majima, and H. Nagai, Thermoelectric properties of (Na1−yMy)xCo2O4 (M=K, Sr, Y, Nd, Sm and Yb; y=0.01∼0.35). Journal of Alloys and Compounds, 2003. 348(1–2): p. 263-269.
4.Wang, Y., Y. Sui, J. Cheng, X. Wang, and W. Su, Comparison of the high temperature thermoelectric properties for Ag-doped and Ag-added Ca3Co4O9. Journal of Alloys and Compounds, 2009. 477(1–2): p. 817-821.
5.Wang, Y., Y. Sui, X. Wang, and W. Su, Enhancement of thermoelectric efficiency in (Ca,Dy)MnO3–(Ca,Yb)MnO3 solid solutions. Applied Physics Letters, 2010. 97(5): p. 052109.
6.Wang, H.C., C.L. Wang, W.B. Su, J. Liu, Y. Sun, H. Peng, and L.M. Mei, Doping Effect of La and Dy on the Thermoelectric Properties of SrTiO3. Journal of the American Ceramic Society, 2011. 94(3): p. 838-842.
7.Lan, J., Y.-H. Lin, Y. Liu, S. Xu, and C.-W. Nan, High Thermoelectric Performance of Nanostructured In2O3-Based Ceramics. Journal of the American Ceramic Society, 2012. 95(8): p. 2465-2469.
8.Bin, Z., L. Jin-Le, L. Yao-Chun, D. Jing-Xuan, L. Yuan-Hua, and N. Ce-Wen, Research Progress of Oxides Thermoelectric Materials. Journal of Inorganic Materials, 2014. 29(3): p. 237-244.
9.Daniel, D.P., Thermoelectric Phenomena, in CRC Handbook of Thermoelectrics. 1995, CRC Press.
10.Rowe, D.M., General Principles and Basic Considerations, in Thermoelectrics Handbook. 2005, CRC Press. p. 1-1-1-14.
11.Seebeck, T.J., On the magnetic polarization of metals and minerals by temperature differences. Annalen der Physik und Chemie, 1826. 6: p. 1-20, 133-160, 253-286.
12.Fardy, M., A.I. Hochbaum, J. Goldberger, M.M. Zhang, and P. Yang, Synthesis and thermoelectrical characterization of lead chalcogenide nanowires. Advanced Materials, 2007. 19(19): p. 3047-3051.
13.Gorskyi, P., Power factor for layered thermoelectric materials with a closed Fermi surface in a quantizing magnetic field. arXiv preprint arXiv:1304.8054, 2013.
14.Hicks, L.D. and M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B, 1993. 47(24): p. 16631-16634.
15.Kholodkovskaya, L., L. Akselrud, A. Kusainova, V. Dolgikh, and B. Popovkin. BiCuSeO: Synthesis and Crystal Structure. in Materials Science Forum. 1993. Trans Tech Publ.
16.Zhao, L.D., D. Berardan, Y.L. Pei, C. Byl, L. Pinsard-Gaudart, and N. Dragoe, Bi1−xSrxCuSeO oxyselenides as promising thermoelectric materials. Applied Physics Letters, 2010. 97(9): p. 092118.
17.Liu, Y., Zhao, L. D., Liu, Y. J., Lan, W. Xu, F. Li, B. P. Zhang, D. Berardan, N. Dragoe, Y. H. Lin, C. W. Nan, J. F. Li, and H. Zhu, Remarkable Enhancement in Thermoelectric Performance of BiCuSeO by Cu Deficiencies. Journal of the American Chemical Society, 2011. 133(50): p. 20112-20115.
18.Li, J., J. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. He, and L.-D. Zhao, A high thermoelectric figure of merit ZT ) 1 in Ba heavily doped BiCuSeO oxyselenides. Energy & Environmental Science, 2012. 5(9): p. 8543-8547.
19.Sui, J., J. Li, J. He, Y.-L. Pei, D. Berardan, H. Wu, N. Dragoe, W. Cai, and L.-D. Zhao, Texturation boosts the thermoelectric performance of BiCuSeO oxyselenides. Energy & Environmental Science, 2013. 6(10): p. 2916-2920.
20.Hsiao, C. L. and X. Qi, The oxidation states of elements in pure and Ca-doped BiCuSeO thermoelectric oxides. Acta Materialia, 2016. 102: p. 88-96.
21.Li, F., J.-F. Li, L.-D. Zhao, K. Xiang, Y. Liu, B.-P. Zhang, Y.-H. Lin, C.-W. Nan, and H.-M. Zhu, Polycrystalline BiCuSeO oxide as a potential thermoelectric material. Energy & Environmental Science, 2012. 5(5): p. 7188-7195.
22.Pei, Y.-L., J. He, J.-F. Li, F. Li, Q. Liu, W. Pan, C. Barreteau, D. Berardan, N. Dragoe, and L.-D. Zhao, High thermoelectric performance of oxyselenides: intrinsically low thermal conductivity of Ca-doped BiCuSeO. NPG Asia Materials, 2013. 5(5): p. e47.
23.Lan, J.-L., B. Zhan, Y.-C. Liu, B. Zheng, Y. Liu, Y.-H. Lin, and C.-W. Nan, Doping for higher thermoelectric properties in p-type BiCuSeO oxyselenide. Applied Physics Letters, 2013. 102(12): p. 123905.
24.Barreteau, C., D. Bérardan, L. Zhao, and N. Dragoe, Influence of Te substitution on the structural and electronic properties of thermoelectric BiCuSeO. Journal of Materials Chemistry A, 2013. 1(8): p. 2921-2926.
25.Li, J., J. Sui, Y. Pei, X. Meng, D. Berardan, N. Dragoe, W. Cai, and L.-D. Zhao, The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material. Journal of Materials Chemistry A, 2014. 2(14): p. 4903-4906.
26.Liu, Y.C., J.F. Liu, B.P. Zhang, and Y.H. Lin. Thermoelectric Properties of Ni Doped P-Type BiCuSeO Oxyselenides. in Key Engineering Materials. 2014. Trans Tech Publ.
27.Ren, G.K., S. Butt, Y.C. Liu, J.L. Lan, Y.H. Lin, C.W. Nan, F. Fu, and X.F. Tang, Enhanced thermoelectric performance of Zn‐doped oxyselenides: BiCu1− xZnxSeO. physica status solidi (a), 2014. 211(11): p. 2616-2620.
28.Luu, S.D. and P. Vaqueiro, Thermoelectric properties of BiOCu1− xMxSe (M= Cd and Zn). Semiconductor Science and Technology, 2014. 29(6): p. 064002.
29.Liu, Y.-c., Y.-h. Zheng, B. Zhan, K. Chen, S. Butt, B. Zhang, and Y.-h. Lin, Influence of Ag doping on thermoelectric properties of BiCuSeO. Journal of the European Ceramic Society, 2015. 35(2): p. 845-849.
30.Berardan, D., J. Li, E. Amzallag, S. Mitra, J. Sui, W. Cai, and N. Dragoe, Structure and Transport Properties of the BiCuSeO-BiCuSO Solid Solution. Materials, 2015. 8(3): p. 1043-1058.
31.Zhang, M., J. Yang, Q. Jiang, L. Fu, Y. Xiao, Y. Luo, D. Zhang, Y. Cheng, and Z. Zhou, Multi-role of Sodium Doping in BiCuSeO on High Thermoelectric Performance. Journal of Electronic Materials, 2015. 44(8): p. 2849-2855.
32.Ren, G.-K., S. Butt, K.J. Ventura, Y.-H. Lin, and C.-W. Nan, Enhanced thermoelectric properties in Pb-doped BiCuSeO oxyselenides prepared by ultrafast synthesis. RSC Advances, 2015. 5(85): p. 69878-69885.
33.Li, Z., C. Xiao, S. Fan, Y. Deng, W. Zhang, B. Ye, and Y. Xie, Dual vacancies: An effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. Journal of the American Chemical Society, 2015. 137(20): p. 6587-6593.
34.Liu, Y., J. Ding, B. Xu, J. Lan, Y. Zheng, B. Zhan, B. Zhang, Y. Lin, and C. Nan, Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure. Applied Physics Letters, 2015. 106(23): p. 233903.
35.Liu, Y., Y. Zhou, J. Lan, C. Zeng, Y. Zheng, B. Zhan, B. Zhang, Y. Lin, and C.-W. Nan, Enhanced thermoelectric performance of BiCuSeO composites with nanoinclusion of copper selenides. Journal of Alloys and Compounds, 2016. 662: p. 320-324.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔