|
[1] M. Kemp, A.v. Bennekom, F.P.A. Robinson, Evaluation of the corrosion and mechanical properties of a range of experimental Cr-Mn stainless steels, Materials Science and Engineering, vol. A199, pp. 183-194, 1995. [2] D.S. Bergstrom, C.A. Botti, AL 201HPTM (UNS S20100) alloy : a high-performance, lower-nickel alternative to 300 series alloys, Stainless Steel World, vol. P5119, p. 3, 2005. [3] ASTM, A967/A967M, Standard Specification for Chemical Passivation Treatments for Stainless Steel Parts, pp. 1-7, 2013. [4] M.A. Stranick, The Corrosion Inhibition of Metals by Molybdate Part I. Mild Steel, Corrosion, vol. 40, pp. 296-302, 1984. [5] A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, R. Arrabal, E. Matykina, Pitting corrosion behaviour of austenitic stainless steels - combining effects of Mn and Mo additions, Corrosion Science, vol. 50, pp. 1796-1806, 2008. [6] K. Sugimoto, Y. Sawada, Role of alloyed molybdenum in austenitic stainless steels in the inhibition of pitting in neutral halide solutions, Corrosion vol. 32, pp. 347-352, 1976. [7] S. Ningshen, U.K. Mudali, G. Amarendra, B. Raj, Corrosion assessment of nitric acid grade austenitic stainless steels, Corrosion Science, vol. 51, pp. 322-329, 2009. [8] W. Fredriksson, Depth Profiling of the Passive Layer on Stainless Steel using Photoelectron Spectroscopy, Doctor, 2012. [9] T.G. Gooch, Corrosion Behavior of Welded Stainless Steel, Welding Research, pp. 135-153, 1996. [10] G. Rondelli, B. Vicentini, A. Cigada, Influence of nitrogen and manganese on localized corrosion behavior of stainless steels in chloride enviroments, Werkst. Korros., vol. 46, pp. 628-632, 1995. [11] S.J. Kerber, J. Tverberg, Stainless steel surface analysis, Advanced Materials and Processes, ASM International, pp. 33-36, 2000. [12] 陳哲生, 設備的防蝕塗裝, 中工高雄會刊, vol. 17, pp. 45-52, 民國99年. [13] A. Leyland, M. Bin-Sudin, A.S. James, M.R. Kalantary, P.B. Wells, A. Matthews, TiN and CrN PVD coatings on electroless nickel-coated steel substrates, Surface and Coatings Technology, vol. 60, pp. 474-479, 1993. [14] 王昆林, 材料工程基础, 清华大学出版社有限公司, 中國, pp. 365-368, 2003. [15] J. Kruger, PASSIVITY, John Wiley & Sons, Inc., pp. 151-155, 2011. [16] H.H. Uhlig, Pssivity in Metals and Alloys, Corrosion Science, vol. 19, pp. 777-791, 1979. [17] S.L. Chawla, R.K. Gupta, Materials selection for corrosion control, ASM International, pp. 523, 1993. [18] M. Faraday, Experimental Researches in Electricity, vol. 2, p. 243, 1965. [19] C. Bennett, W. Burnham, Trans. Electrochem. Soc, vol. 29, p. 217, 1916. [20] L. Tronstad, C. Borgmann, Trans. Faraday Soc., vol. 30, p. 349, 1934. [21] D.D. Macdonald, The Point Defect Model for the Passive State, Journal of The Electrochemical Society, vol. 39, pp. 3434-3449, 1992. [22] D.D. Macdonald, Passivity-the key to our metals-based civilization, Pure and Applied Chemistry, vol. 71, pp. 951-978, 1999. [23] C.-O.A. Olsson, D. Landolt, Passive films on stainless steels - chemistry, structure and growth, Electrochimica Acta, vol. 48, pp. 1093-1104, 2003. [24] N. Sato, A theory for breakdown of anodic oxide films on metals, Electrochimica Acta, vol. 16, pp. 1683-1692, 1971. [25] H. Bohni, Breakdown of Passivity and Localized Corrosion Processes, Langmuir, vol. 3, pp. 924-930, 1986. [26] J. Kruger, National Association of Corrosion Engineers, Houston, pp. 91, 1976. [27] Heusler, K.E. Fischer, L. Werkst, Korros., vol. 27, pp. 551 & 778, 1976. [28] N. Sato, Anodic Breakdown of Passive Films on Metals, Journal of The Electrochemical Society, vol. 129, pp. 258, 1982. [29] D.D. Macdonald, M.A. Rifaie, G.R. Engelhardt, New Rate Laws for the Growth and Reduction of Passive Films, Journal of The Electrochemical Society, vol. 148, pp. B343-B347, 2001. [30] ASTM, A380/A380M - 13, Standard Practice for Cleaning, Descaling, and Passivation of Stainless Steel Parts, Equipment, and Systems1, ASTM International, pp. 1-13, 2013. [31] L.V. Taveira, G. Frank, H.P. Strunk, L.F.P. Dick, The influence of surface treatments in hot acid solutions on the corrosion resistance and oxide structure of stainless steels, Corrosion Science, vol. 47, pp. 757-769, 2005. [32] P. Mutombo, N. Hackerman, Potential decay behavior of iron in dilute nitric acid, Journal of Solid State Electrochemistry, vol. 1, pp. 194-198, 1997. [33] M.A. Barbosa, The pitting resistance of AISI 316 stainless steel passivated in diluted nitric acid, Corrosion Science, vol. 23, pp. 1293-1305, 1983. [34] Y.S. Zhang, X.M. Zhu, M. Liu, R.X. Che, Effects of anodic passivation on the constitution, stability and resistance to corrosion of passive film formed on an Fe-24Mn-4Al-5Cr alloy, Applied Surface Science, vol. 222, pp. 89-101, 2004. [35] M.J. Kim, J.G. Kim, Effect of Manganese on the Corrosion Behavior of Low Carbon Steel in 10 wt.% Sulfuric Acid, Journal of The Electrochemical Society, vol. 10, pp. 6872 - 6885, 2015. [36] F. Mohammadi, T. Nickchi, M.M. Attar, A. Alfantazi, EIS study of potentiostatically formed passive film on 304 stainless steel, Electrochimica Acta, vol. 56, pp. 8727-8733, 2011. [37] D. Wallinder, J. Pan, C. Leygraf, A. Delblanc-Bauer, EIS and XPS study of surface modification of 316LVM stainless steel after passivation, Corrosion Science, vol. 41, pp. 275-289, 1999. [38] P. Keller, H.-H. Strehblow, XPS investigations of electrochemically formed passive layers on FeCr-alloys in 0.5 M H2SO4, Corrosion Science, vol. 46, pp. 1939-1952, 2004. [39] V. Maurice, W.P. Yang, P. Marcus, XPS and STM Study of Passive Films Formed on Fe-22Cr(110) Single-Crystal Surfaces, The Electrochemical Society, vol. 143, pp. 1182-1200, 1996. [40] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd Edition, NACE Cebelcor, Houston, Texas, pp. 256-306, 1974. [41] S. Haupt, H.-H. Strehblow, A combined surface analytical and electrochemical study of the formation of passive layers on Fe-Cr alloys in 0.5 M H2SO, Corrosion Science, vol. 37, pp. 43-54, 1995. [42] G. Okamoto, Passive Film Of 18-8 Sainless Steel Structure And Its Function, Corrosion Science, vol. 13, pp. 471-489, 1973. [43] C.-O.A. Olsson, D. Hamm, D. Landolt, Electrochemical Quartz Crystal Microbalance Studies of the Passive Behavior of Cr in a Sulfuric Acid Solution, Journal of The Electrochemical Society, vol. 147, pp. 2563-2571, 2000. [44] G. Suresh, V.R. Raju, U.K. Mudali, R.K. Dayal, Corrosion assessment of type 304L stainless steel in nitric acid, Corrosion Engineering, Science and Technology, vol. 38, pp. 309-312, 2003. [45] M.G. Fontana, Corrosion engineering, McGraw-Hill, New York, 1986. [46] Z. Ahmad, CORROSION KINETICS, Butterworth-Heinemann, pp. 94-107, 2006. [47] 柯賢文, 腐蝕及其防制, 金華科技圖書股份有限公司, 臺北, pp. 81-98, 2005. [48] P. Kovacs, N.S. Istephanous, Proceedings of the Symposium on Compatability of Biomedical Implants, Electrochemical Society, 1994. [49] A.F. Olander, M.I. Marek, Compability of Biomedical Implants, The Electrochem. Soc. INC., New Jersey, pp. 196, 1994. [50] S. Jin, A. Atrens, ESCA-Studies of the structure and composition of the passive film formed on stainless steels by various immersion temperatures in 0.1 M NaCl solution, Applied Physics A, vol. 45, pp. 83-91, 1988. [51] L. Wegrelius, I. Olefjord, 12th International Corrosion Congress, NACE, Houston, TX, 1993, p. 3887. [52] V. Maurice, W.P. Yang, P. Marcus, X‐Ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study of Passive Films Formed on (100) Fe-18Cr-13Ni Single-Crystal Surfaces, Journal of The Electrochemical Society, vol. 145, pp. 909-920, 1998. [53] S.J. Kerber, J. Tverberg, Effect of nitric acid passivation on the surface composition of mechanically polished type 316 L sanitary tube, European Journal of Parenteral Sciences, vol. 3, pp. 117-124, 1998. [54] E. Otero, A. Pardo, E. Sáenz, M.V. Utrilla, P. Hierro, A study of the influence of nitric acid concentration on the corrosion resistance of sintered austenitic stainless steel, Corrosion Science, vol. 38, pp. 1485-1493, 1996. [55] Reference T. Shibata, M. Tanaka, 4th Japan-USSR Corrosion Seminar, Japan Society of Corrosion Engineering, Japan, 1985, p. 13. [56] A. Fattah-alhosseinia, M.A. Sonamia, A. Loghmani, F.Z. Shoja, Passivity of AISI 316L Stainless Steel as a Function of Nitric Concentration, Journal of Advanced Materials and Processing, vol. 2, pp. 21-30, 2014. [57] J.S. Noh, N.J. Laycock, W. Gao, D.B. Wells, Effects of nitric acid passivation on the pitting resistance of 316 stainless steel, Corrosion Science, vol. 42, pp. 2069-2084, 2000. [58] F.-M. Pan, Y.-L. Lin, J. Oung, XPS and AES Studies of Carbon Steel Polarized in Aqueous Molybdate Solutions, Surface and interface analysis, vol. 19, pp. 409-413, 1992. [59] K. Ogura, T. Ohama, Pit Formation in the Cathodic Polarization of Passive Iron IV. Repair Mechanism by Molybdate, Chromate and Tungstate, Corrosion, vol. 40, pp. 47-51, 1984. [60] T. Kodama, J.R. Ambrose, Corrosion, vol. 33, pp. 155, 1979. [61] J.P.G. Farr, M. Saremi, Molybdate In Aqueous Corrosion Inhibition I : Effects Of Molybdate On The Potentiodynamic Behaviors Of Steel And Some Other Metals, Surface Technlogy, vol. 19, pp. 137-144, 1983. [62] Y.C. Lu, C.R. Clayton, A.R. Brooks, A bipolar model of the passivity of stainless steels - II. The influence of aqueous molybdate, Corrosion Science, vol. 29, pp. 863-880, 1989. [63] C.O.A. Olsson, S. Malmgren, M. Gorgoi, K. Edstrom, Electrochemical and Solid-State Letters, pp. C1-C3, 2011. [64] W. Fredriksson, K. Edström, C.-O.A. Olsson, XPS analysis of manganese in stainless steel passive films on 1.4432 and the lean duplex 1.4162, Corrosion Science, vol. 52, pp. 2505-2510, 2010. [65] R. Kirchheim, B. Heine, S. Hofmann, H. Hofsäss, Compositional changes of passive films due to different transport rates and preferential dissolution, Corrosion Science, vol. 31, p. 573, 1990. [66] I. Olefjord, B. Brox, U. Jelvestam, Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA, Journal of The Electrochemical Society, vol. 132, pp. 2854-2861 1985. [67] G. Herting, I.O. Wallinder, C. Leygraf, Corrosion-induced release of the main alloying constituents of manganese - chromium stainless steels in different media, Journal of Environmental Monitoring, vol. pp. 1084-1091, 2008. [68] J.-Y. Park, Y.-S. Ahn, Effect of Ni and Mn on the Mechanical Properties of 22Cr Micro-duplex Stainless Steel, Acta Metallurgica Sinica, vol. 28, pp. 32-38, 2015. [69] M. Liljas, P. Johansson, H.-P. Liu, C.-O.A. Olsson, Steel Research International, vol. 79, p. 466, 2008. [70] G. Wranglen, Pitting and sulphide inclusions in steel, Corrosion Science, vol. 14, pp. 331-349, 1974. [71] K. Park, H. Kwon, Effect of Mn on the localized corrosion behavior of Fe-18Cr alloys, Electrochimica Acta, vol. 55, pp. 3421- 3427, 2010. [72] L. Veleva, B. Tsaneva, P. Castro-Borges, M.Burova, Characterization of Passive Films Formed on Manganese Nickel-Free Stainless Steel Exposed to Simulated Concrete Pore Environment, Int. J. Electrochem. Sci, vol. 7, pp. 4121-4132, 2012. [73] I.-u.-H. Toor, Effect of Mn Content and Solution Annealing Temperature on the Corrosion Resistance of Stainless Steel Alloys, Journal of Chemistry, vol. 2014, pp. 1-2, 2014. [74] K. Sugimoto, S. Matsuda, Analysis of Passive Films on Austeno-Ferritic Stainless Steel by Microscopic Ellipsometry, Journal of The Electrochemical Society, vol. 130, pp. 2323-2329 1983. [75] G.T. Burstein, R.M. Souto, Improvement in Pitting Resistance of Stainless Steel Surfaces by Prior Anodic Treatment in Metasilicate Solution, Journal of The Electrochemical Society, vol. 151, pp. B537-B542, 2004. [76] K. Asami, K. Hashimoto, S. Shimodaira, An XPS study of the passivity of a series of iron - chromium alloys in sulphuric acid, Corrosion Science, vol. 18, pp. 151-160, 1978. [77] H. Xu, T. Lou, Y. Li, Synthesis and characterize of trivalent chromium Cr(OH)3 and Cr2O3 microspheres, Inorganic Chemistry Communications, vol. 7, pp. 666-668, 2004. [78] A. Fattah-alhosseini, M.M. Khalvan, Semiconducting Properties of Passive Films Formed on AISI 420 Stainless Steel in Nitric Acid, Journal of Advanced Materials and Processing, vol. 1, pp. 15-22, 2013. [79] M. Sakashita, N. Sato, The Effect Of Molybdate Anion On the Ion-Selectivity Of Hydrous Ferric Oxide Films In Chloride Solutions, Corrosion Science, vol. 17, pp. 473-486, 1977.
|