跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 04:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖信旭
研究生(外文):Sin-SyuLiao
論文名稱:鋰錳氧薄膜電極探針之開發與奈米電化學分析
論文名稱(外文):Development and nanoscale electrochemical characterization of Li-Mn-O thin film electrode probe
指導教授:劉浩志劉奕宏劉奕宏引用關係
指導教授(外文):Bernard Haochih LiuYi-Hung Liu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:89
中文關鍵詞:薄膜電極探針微區阻抗量測全固態薄膜鋰離子電池固態電解質
外文關鍵詞:thin film electrode AFM probeall-solid-state Li-ion batterylocalized impedance microscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
智慧型手機、平板電腦等可攜帶式行動設備蓬勃發展的時代,鋰離子二次電池已是日常生活中不可或缺的儲能裝置,其中全固態薄膜鋰離子電池 (all-solid-state thin film lithium ion battery) 被看好能成為下一世代的鋰離子電池,相較於傳統液態鋰離子電池具有安全性、輕便性、電池形狀設計比較不具限制且更高的能量密度等優點,然而固態電解質的離子導電性質不如液態電解質,且電極/固態電解質界面接觸不佳與相容性問題都是現今全固態鋰離子電池開發上必須克服的困難,本研究欲透過原子力顯微鏡 (atomic force microscopy, AFM) 掃描探針與微區阻抗技術 (localized impedance microscopy, LIM) 探討鋰離子於固態電解質以及交界面的遷移行為。
本研究選用鋰磷氧氮化物(lithium phosphorous oxynitride, LiPON)此種非晶態的固態電解質作為研究對象,使用鍍金探針與Li-Mn-O薄膜電極探針量測LiPON薄膜微區性質。薄膜電極探針的製備方式是以兩步驟製程將Li-Mn-O活性材料合成至AFM探針上,第一步驟為電鍍 (electroplating),室溫下固定電流密度於0.05 - 0.5 mA/cm2區間電解Mn(NO3)2水溶液,使Mn-O前驅物附著於探針上,其成分為Mn3O4;第二步驟透過水熱法 (hydrothermal method),於裝有3 M LiOH水溶液的高壓釜環境中,進行持溫100 oC 10小時的水熱反應,使Li元素進入前驅物中,成分主要為Li2MnO3和LiMnO2。也進行歐傑電子能譜儀(Auger electron spectroscopy, AES)分析,驗證其確實含有Li、Mn與O元素。
使用鍍金探針量測LiPON薄膜微區阻抗在未施加直流偏壓或低偏壓下,低頻區頻譜能觀察到Warburg效應,而塊材量測方式僅觀測到電荷堆積於阻塞電極 (blocking electrode) 所產生極化電容 (polarization capacitance)。也發現較高偏壓會致使Au探針/LiPON交界處不穩定,出現法拉第反應 (Faradaic reaction),即為電荷轉移 (charge transfer) 現象,推判是探針周圍LiPON薄膜產生反應。
使用Li-Mn-O薄膜電極探針可直接衡量Li-Mn-O電極/LiPON薄膜交界面的電荷轉移電阻與界面電容,隨著施加直流偏壓增加,電荷轉移電阻有顯著的下降,而LiPON薄膜電阻無太大變化,如何有效降低層與層之間的界面電阻是全固態電池開發上的難關之一,以此種薄膜電極探針技術將可協助各研究團隊探討微觀尺度的界面電性。
本研究以塊材與兩種微區阻抗分析技術探討LiPON薄膜和Li-Mn-O/LiPON界面的電化學特性,未來發展上期望能應用於不同材料系統中,協助探討全固態鋰離子電池內部各界面的反應機制。

In this study, we develop atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS) for exploring the reaction process at interfaces in the all-solid-state Li-ion battery. The localized impedance properties of an amorphous solid-state electrolyte, lithium phosphorus oxynitride (LiPON) have been studied by conductive AFM probes and Li-Mn-O thin film electrode AFM probes. Li-Mn-O material is synthesized on to the AFM tip by two-step reaction process. First, the Mn3O4 precursor is deposited by electrodeposition in Mn(NO3)2 aqueous solution under galvanostatic control. Second step is hydrothermal method. The Mn3O4 coated AFM probes were treated in a LiOH aqueous solution in an autoclave at 100 oC for 10 hr. The products were almost LiMnO2 and Li2MnO3. Under no or low DC bias, the Warburg diffusion could be detected by using conductive AFM probes compared to bulk impedance measurement could only observe polarization capacitance due to the charge accumulation near the blocking electrode. At higher bias, the charge transfer reaction will occur at the Au/LiPON interface, we suggested LiPON film become unstable and decompose. The charge transfer resistance and interfacial capacitance of Li-Mn-O/LiPON could be measured independently by Li-Mn-O thin film electrode probes. This novel measurement concept can assist to investigate the interface properties in the all-solid-state Li-ion batteries.
中文摘要 I
Extended abstract III
致謝 XIII
總目錄 XV
圖目錄 XVIII
表目錄 XX
第一章 序論 1
1-1 前言 1
1-2 研究動機 2
第二章 文獻回顧 3
2-1 鋰磷氧氮化物(LiPON)固態電解質薄膜介紹 3
2-2 電鍍與水熱法合成Li-Mn-O材料 9
第三章 理論基礎 12
3-1 電鍍製程 12
3-1-1 電鍍原理 12
3-2-2 影響電鍍品質的因素 13
3-2 水熱法 16
3-3 原子力顯微鏡 17
3-4 電化學阻抗頻譜 20
3-4-1 等效電路元件 22
3-4-2 等效電路組合 27
3-5 微區阻抗量測 30
第四章 實驗方法與流程 32
4-1 實驗架構 32
4-2 Li-Mn-O材料合成 32
4-3 Li-Mn-O薄膜電極探針製備 36
4-4 LiPON固態電解質薄膜製備 37
4-5 LiPON薄膜之塊材阻抗量測 39
4-6 LiPON薄膜之微區阻抗量測 41
第五章 結果與討論 44
5-1 Li-Mn-O材料合成 44
5-1-1 第1步驟:Mn-O前驅物合成 44
5-1-2 第2a步驟:LiCl水溶液電鍍製程 47
5-1-3 第2b步驟:LiCl水溶液水熱法 48
5-1-4 第2c步驟:LiOH水溶液水熱法 49
5-2 薄膜電極探針 53
5-2-1 薄膜電極探針製備 53
5-2-2 探針懸臂與針頭成份分析 59
5-3 LiPON薄膜塊材阻抗量測 63
5-4 LiPON薄膜微區阻抗量測 66
5-4-1 鍍金探針量測LiPON薄膜微區阻抗 66
5-4-2 Li-Mn-O電極探針量測LiPON薄膜微區阻抗 74
5-4-3 兩種微區阻抗量測技術機制討論 77
第六章 結論與未來展望 80
6-1 結論 80
6-2 未來展望 83
第七章 參考文獻 85

[1]A. Patil, V. Patil, D. W. Shin, J. W. Choi, D. S. Paik, and S. J. Yoon, Issue and challenges facing rechargeable thin film lithium batteries, Materials Research Bulletin, vol. 43, pp. 1913-1942, Aug-Sep 2008.
[2]A. Brazier, L. Dupont, L. Dantras-Laffont, N. Kuwata, J. Kawamura, and J. M. Tarascon, First cross-section observation of an all solid-state lithium-ion Nanobattery by transmission electron microscopy, Chemistry of Materials, vol. 20, pp. 2352-2359, Mar 2008.
[3]K. Takada, N. Ohta, L. Q. Zhang, K. Fukuda, I. Sakaguchi, R. Ma, et al., Interfacial modification for high-power solid-state lithium batteries, Solid State Ionics, vol. 179, pp. 1333-1337, Sep 2008.
[4]N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, et al., A lithium superionic conductor, Nat Mater, vol. 10, pp. 682-686, 2011.
[5]K. Takada, Progress and prospective of solid-state lithium batteries, Acta Materialia, vol. 61, pp. 759-770, Feb 2013.
[6]G. Sahu, Z. Lin, J. C. Li, Z. C. Liu, N. Dudney, and C. D. Liang, Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4, Energy & Environmental Science, vol. 7, pp. 1053-1058, Mar 2014.
[7]W. Lee, F. B. Prinz, X. Chen, S. Nonnenmann, D. A. Bonnell, and R. P. O'Hayre, Nanoscale impedance and complex properties in energy-related systems, Mrs Bulletin, vol. 37, pp. 659-667, Jul 2012.
[8]A. J. Bhattacharyya, J. Fleig, Y. G. Guo, and J. Maier, Local conductivity effects in polymer electrolytes, Advanced Materials, vol. 17, pp. 2630-2634, 2005.
[9]A. Layson, S. Gadad, and D. Teeters, Resistance measurements at the nanoscale: scanning probe ac impedance spectroscopy, Electrochimica Acta, vol. 48, pp. 2207-2213, Jun 2003.
[10]P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ionics, vol. 180, pp. 911-916, Jun 2009.
[11]X. H. Yu, J. B. Bates, G. E. Jellison, and F. X. Hart, A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride, Journal of the Electrochemical Society, vol. 144, pp. 524-532, Feb 1997.
[12]J. Schwenzel, V. Thangadurai, and W. Weppner, Developments of high-voltage all-solid-state thin-film lithium ion batteries, Journal of Power Sources, vol. 154, pp. 232-238, Mar 2006.
[13]J. B. Goodenough and Y. Kim, Challenges for Rechargeable Li Batteries, Chemistry of Materials, vol. 22, pp. 587-603, Feb 2010.
[14]V. Thangadurai, H. Kaack, and W. J. F. Weppner, Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta), Journal of the American Ceramic Society, vol. 86, pp. 437-440, Mar 2003.
[15]V. Thangadurai, J. Schwenzel, and W. Weppner, Tailoring ceramics for specific applications: A case study of the development of all-solid-state lithium batteries, Ionics, vol. 11, pp. 11-23, 2005.
[16]J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, et al., ELECTRICAL-PROPERTIES OF AMORPHOUS LITHIUM ELECTROLYTE THIN-FILMS, Solid State Ionics, vol. 53, pp. 647-654, Jul-Aug 1992.
[17]J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, et al., FABRICATION AND CHARACTERIZATION OF AMORPHOUS LITHIUM ELECTROLYTE THIN-FILMS AND RECHARGEABLE THIN-FILM BATTERIES, Journal of Power Sources, vol. 43, pp. 103-110, Mar 1993.
[18]P. Birke, W. F. Chu, and W. Weppner, Materials for lithium thin-film batteries for application in silicon technology, Solid State Ionics, vol. 93, pp. 1-15, Dec 1996.
[19]W. Y. Liu, C. L. Li, and Z. W. Fu, Stability of lithium phosphorous oxynitride thin films in humid air, Acta Physico-Chimica Sinica, vol. 22, pp. 1413-1418, Nov 2006.
[20]B. Wang, J. B. Bates, F. X. Hart, B. C. Sales, R. A. Zuhr, and J. D. Robertson, Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes, Journal of the Electrochemical Society, vol. 143, pp. 3203-3213, Oct 1996.
[21]Z. Q. Hu, K. Xie, D. Wei, and N. Ullah, Influence of sputtering pressure on the structure and ionic conductivity of thin film amorphous electrolyte, Journal of Materials Science, vol. 46, pp. 7588-7593, Dec 2011.
[22]陳致融, 胡淑芬, and 劉如熹, 鋰磷氧氮化物(LiPON)固態電解質薄膜之製作及其特性分析, 化學, vol. 70, pp. 203-211, 2012.
[23]K. F. Chiu, C. C. Chen, K. M. Lin, H. C. Lin, C. C. Lo, W. H. Ho, et al., Modification of sputter deposited solid-state electrolyte thin films, Vacuum, vol. 84, pp. 1296-1301, Jun 2010.
[24]Z. Q. Hu, D. Z. Li, and K. Xie, Influence of radio frequency power on structure and ionic conductivity of LiPON thin films, Bulletin of Materials Science, vol. 31, pp. 681-686, Aug 2008.
[25]L. Le Van-Jodin, F. Ducroquet, F. Sabary, and I. Chevalier, Dielectric properties, conductivity and Li+ ion motion in LiPON thin films, Solid State Ionics, vol. 253, pp. 151-156, Dec 2013.
[26]C. R. Mariappan, T. P. Heins, and B. Roling, Electrode polarization in glassy electrolytes: Large interfacial capacitance values and indication for pseudocapacitive charge storage, Solid State Ionics, vol. 181, pp. 859-863, Jul 2010.
[27]L. Baggetto, R. A. H. Niessen, F. Roozeboom, and P. H. L. Notten, High energy density all-solid-state batteries: A challenging concept towards 3D integration, Advanced Functional Materials, vol. 18, pp. 1057-1066, Apr 2008.
[28]K. Chung, W. S. Kim, and Y. K. Choi, Lithium phosphorous oxynitride as a passive layer for anodes in lithium secondary batteries, Journal of Electroanalytical Chemistry, vol. 566, pp. 263-267, May 2004.
[29]S. J. Yoo, J. W. Lim, B. Choi, and Y. E. Sung, Enhanced reliability of electrochromic devices with a LiPON protective layer, Journal of the Electrochemical Society, vol. 154, pp. P6-P10, 2007.
[30]J. H. Yao, T. Takasaki, K. Nishimura, T. Mukai, and T. Sakai, X-ray Diffraction Characterization and Battery Performances of Fiber-type Li-Mn-O Electrode for Li-ion Battery, Electrochemistry, vol. 82, pp. 109-112, Feb 2014.
[31]Y. H. Liu, T. Takasaki, K. Nishimura, M. Yanagida, and T. Sakai, Development of lithium ion battery using fiber-type lithium-rich cathode and carbon anode materials, Journal of Power Sources, vol. 290, pp. 153-158, Sep 2015.
[32]J. Yao, K. Nishimura, T. Mukai, T. Takasaki, K. Tsutsumi, K. F. Aguey-Zinsou, et al., LiMn0.97Al0.03O2 Based Carbon Fiber Electrode Possessing High Rate Capabilities for Li-Ion Batteries, Ecs Electrochemistry Letters, vol. 1, pp. A83-A86, 2012.
[33]J. Yao, J. Xie, K. Nishimura, T. Mukai, T. Takasaki, K. Tsutsumi, et al., Lithium manganese aluminum oxide-based full Li-ion battery using carbon fibers as current collectors, Ionics, vol. 19, pp. 1849-1853, Dec 2013.
[34]H. L. Helen and H. Yinlun, Electroplating, in Encyclopedia of Chemical Processing. vol. null, ed: Taylor & Francis, 2007, pp. 839-848.
[35]Y. D. Gamburg and G. Zangari, Theory and practice of metal electrodeposition: Springer Science & Business Media, 2011.
[36]W. Olberding, An Introduction to Electrodeposition and Electroless Plating Processes, in Modern Surface Technology, ed: Wiley-VCH Verlag GmbH & Co. KGaA, 2006, pp. 101-118.
[37]K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology A technology for Crystal Growth and Materials Processing, Byrappa, M. Yoshimura–Noyes Publications, Park Ridge, NJ, 2001.
[38]陳建淼 and 洪連輝, 原子力顯微鏡 (Atomic Force Microscopy), 2009.
[39]X.-Z. R. Yuan, C. Song, H. Wang, and J. Zhang, Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications: Springer Science & Business Media, 2009.
[40]M. A. Meza-Cuevas, Stimulation of Neurons by Electrical Means vol. 4: Logos Verlag Berlin GmbH, 2015.
[41]R. O'Hayre, M. Lee, and F. B. Prinz, Ionic and electronic impedance imaging using atomic force microscopy, Journal of Applied Physics, vol. 95, pp. 8382-8392, Jun 2004.
[42]J. Shin, V. Meunier, A. P. Baddorf, and S. V. Kalinin, Nonlinear transport imaging by scanning impedance microscopy, Applied Physics Letters, vol. 85, pp. 4240-4242, Nov 2004.
[43]S. V. Kalinin and D. A. Bonnell, Scanning impedance microscopy of electroactive interfaces, Applied Physics Letters, vol. 78, pp. 1306-1308, Feb 2001.
[44]M. Miyayama and H. Yanagida, DEPENDENCE OF GRAIN-BOUNDARY RESISTIVITY ON GRAIN-BOUNDARY DENSITY IN YTTRIA-STABILIZED ZIRCONIA, Journal of the American Ceramic Society, vol. 67, pp. C194-C195, 1984.
[45]L. Kandler, British Patent 917, 291, 1963.
[46]R. J. Gummow, D. C. Liles, and M. M. Thackeray, LITHIUM EXTRACTION FROM ORTHORHOMBIC LITHIUM MANGANESE OXIDE AND THE PHASE-TRANSFORMATION TO SPINEL, Materials Research Bulletin, vol. 28, pp. 1249-1256, Dec 1993.
[47]J. N. Reimers, E. W. Fuller, E. Rossen, and J. R. Dahn, SYNTHESIS AND ELECTROCHEMICAL STUDIES OF LIMNO2 PREPARED OF LOW-TEMPERATURES, Journal of the Electrochemical Society, vol. 140, pp. 3396-3401, Dec 1993.
[48]A. R. Armstrong and P. G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries, Nature, vol. 381, pp. 499-500, Jun 1996.
[49]B. Ammundsen and J. Paulsen, Novel lithium-ion cathode materials based on layered manganese oxides, Advanced Materials, vol. 13, pp. 943-+, Jul 2001.
[50]Q. Liu, D. L. Mao, C. K. Chang, and F. Q. Huang, Phase conversion and morphology evolution during hydrothermal preparation of orthorhombic LiMnO2 nanorods for lithium ion battery application, Journal of Power Sources, vol. 173, pp. 538-544, Nov 2007.
[51]A. Nagasubramanian, D. Y. W. Yu, H. Hoster, and M. Srinivasan, Enhanced cycling stability of o-LiMnO2 cathode modified by lithium boron oxide coating for lithium-ion batteries, Journal of Solid State Electrochemistry, vol. 18, pp. 1915-1922, Jul 2014.
[52]M. M. Thackeray, Manganese oxides for lithium batteries, Progress in Solid State Chemistry, vol. 25, pp. 1-71, 1997/01/01 1997.
[53]P. Kalyani, S. Chitra, T. Mohan, and S. Gopukumar, Lithium metal rechargeable cells using Li2MnO3 as the positive electrode, Journal of Power Sources, vol. 80, pp. 103-106, 1999.
[54]J. Rana, M. Stan, R. Kloepsch, J. Li, G. Schumacher, E. Welter, et al., Structural Changes in Li2MnO3 Cathode Material for Li‐Ion Batteries, Advanced Energy Materials, vol. 4, 2014.
[55]E. Radvanyi, E. De Vito, W. Porcher, and S. J. S. Larbi, An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries, Journal of Analytical Atomic Spectrometry, vol. 29, pp. 1120-1131, 2014.
[56]K. Tsutsumi, M. Shima, and A. Tanaka. Advanced Analysis of Active Materials in Li-Ion Battery by XPS and AES. JEOL NEWS Magazine. 59-71, 2014.
[57]L. Persson, Pierre Auger - A life in the service of science, Acta Oncologica, vol. 35, pp. 785-787, 1996.
[58]H. J. Mathieu, Auger Electron Spectroscopy, in Surface Analysis – The Principal Techniques, ed: John Wiley & Sons, Ltd, 2009, pp. 9-45.
[59]R. P. Gunawardane and C. R. Arumainayagam, AUGER ELECTRON SPECTROSCOPY, in Handbook of Applied Solid State Spectroscopy, R. D. Vij, Ed., ed Boston, MA: Springer US, 2006, pp. 451-483.
[60]R. O'Hayre, G. Feng, W. D. Nix, and F. B. Prinz, Quantitative impedance measurement using atomic force microscopy, Journal of Applied Physics, vol. 96, pp. 3540-3549, Sep 2004.
[61]J. C. Dyre, P. Maass, B. Roling, and D. L. Sidebottom, Fundamental questions relating to ion conduction in disordered solids, Reports on Progress in Physics, vol. 72, p. 15, Apr 2009.
[62]X. Yu, J. Bates, and G. Jellison Jr, Characterization of lithium phosphorous oxynitride thin films, Proc.-Electrochem. Soc, pp. 95-22, 1996.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top