(3.238.96.184) 您好!臺灣時間:2021/05/18 16:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張家維
研究生(外文):Chia-WeiChang
論文名稱:石墨烯及其衍生物合成與圖案化研究
論文名稱(外文):Synthesis and Patterning of Graphene Sheets and Related Materials
指導教授:洪敏雄洪敏雄引用關係
指導教授(外文):Min-Hsiung Hon
學位類別:博士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:81
中文關鍵詞:直接剝層石墨烯氧化石墨烯奈米壓印水溶液法
外文關鍵詞:directly exfoliated graphene sheets (DEGS)graphene oxide sheetstransfer printingaqueous method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文利用Hummer法製作氧化石墨烯薄片及水溶液法直接剝層製備石墨烯薄片進行石墨烯及其衍生物的研究。利用氧化石墨烯帶負電荷的特性,藉由奈米壓印的製程進行氧化石墨烯圖案化。再由實驗的設計佐證探討相關的機制與原理。
利用Hummer法製備的氧化石墨烯大小從數百奈米到數微米,層數1至3層。直接剝層製備石墨烯實驗是藉由添加適當溶劑及嵌插物輔以超音波震盪進行剝層。產物的尺寸大小長邊可達20 μm,達大尺寸的薄片,直接剝層石墨烯層數可控制在少於5層,溶液濃度達18~20 μg/mL,直接剝層的實驗方式並未使用界面活性劑,僅添加低沸點溶劑及離子性化合物,此化學藥劑可經由簡單的後續步驟移除。本實驗中使用大尺寸的石墨原物料及添加乙醇及氨水當作溶劑,此溶劑有效潤濕石墨原物料,而插層劑的氯化鈉,有效加大石墨層間距以利剝層。經由X-ray繞射圖譜的分析證實離子性插層物有效增大石墨層間距,施加超音波能有效剝層。
實驗亦使用全溶液法進行氧化石墨烯的圖案化。採用氧化石墨烯上含氧官能基攜帶負電荷的特性,在基板上使用PEI溶液處理。PEI水溶液處理,除了改善基板表面的親疏水性,亦使基板表面能帶正電荷,藉由PDMS模具-氧化石墨烯與基板-氧化石墨烯的界面能差異,以及氧化石墨烯與基板的靜電吸引力,進行氧化石墨烯圖案化製備。其圖案化特徵尺寸可達20 μm,壓印範圍可達2.5 cm* 2.5 cm面積。在波長為550 nm處,以空白玻璃基板的透光度為90%的比較基準,圖案化的試片透光度可達77%,在熱還原處理後,顏色由原先的淡黃色轉變為灰黑色,透光度則掉至66%。藉由全塗佈的試片量測電性與光學性質的關係,則在穿透度56%時有50 kohm/sq的片電阻值。

In this research, we fabricate graphene oxide sheets and directly exfoliated few-layer graphene sheets by Hummer’s method and liquid-phase exfoliation process, respectively. Then we define patterns of graphene and graphene related materials by nano-imprinting method. We discuss the mechanisms of these experiments.
The morphology of directly exfoliated graphene sheets (DEGS) was greater than 20 μm on the longer side. The number of layers is less than five. No surfactant was added, and only low boiling point solvents and ionic chemicals were used. Big-sized natural graphite flakes was used as the raw material and ethanol and ammonia were used as solvents, then ultrasound was applied to help direct exfoliation in a bath. The direct exfoliation mechanism for preparing large-area graphene sheets is proposed and discussed. The concentration of large-area DEGS suspension is up to 18~20 μg/mL.
We use all-aqueous method to pattern solution-processed graphene oxide (GO). We take advantage of the naturally charged property of GO to pattern it on the substrates which were pre-soaked in polyethyleneimine (PEI) solution. The charged GO was spin-coated on the polydimethylsiloxane (PDMS) stamp to achieve maskless patterning by a transfer printing method. The feature sizes of the printed GO patterns obtained ranging from 20 to 90 μm. We also discuss the mechanisms of the transfer process, which are dependent on the different strengths of nonspecific adhesion at the interface between the PDMS-GO sheets and substrate-GO sheets, as well as the electrostatic interaction between charged functional groups on GO and PEI molecules.

目錄

I. 中文摘要............................................................................................... I
II. 英文延伸摘要....................................................................................... III
III. 誌謝………………………………..………………………………..... XIV
IV. 目錄...................................................................................................... XV
V. 表目錄.................................................................................................... XVI
VI. 圖目錄.................................................................................................... XVI
VII. 符號及中英文對照表............................................................................. XX
1. 第一章 緒論............................................................................................ 1
1-1 前言................................................................................................... 1
1-2 研究動機........................................................................................... 3
2. 第二章 基礎理論與文獻回顧................................................................ 4
2-1 相關背景介紹…………………………...............………………… 4
2-2 石墨烯、氧化石墨烯及剝層…………...............………………… 5
2-3 石墨烯氮化改質………………………….........………………… 16
2-4 微米壓印及石墨烯圖案化……………………….........………… 22
3. 第三章 實驗藥品與實驗步驟.............................................................. 29
4. 第四章 結果與討論.............................................................................. 33
4-1 合成石墨烯薄片及其衍生物......................................................... 33
4-1-1 Hummer法合成氧化石墨烯....................................................... 34
4-1-2 直接剝層使用的原料及溶劑..................................................... 35
4-1-3 插層物-氯化鈉............................................................................ 38
4-1-4 直接剝層產物的TEM影像及探討........................................... 38
4-1-5 X-ray繞射分析以及插層物功用……........................................ 44
4-1-6 氧化石墨烯氮化改質................................................................. 48
4-2 定義氧化石墨烯薄膜圖案並以熱處理還原…............................ 53
4-2-1 奈米壓印轉印定義氧化石墨烯薄膜圖案................................. 53
4-2-2 PEI溶液親水處理對轉印的功用及影響……........................... 55
4-2-3 轉印氧化石墨烯圖案的拉曼鑑定分析..................................... 57
4-2-4 熱處理還原氧化石墨烯圖案及光學、電性探討..................... 61
5. 第五章 結論.......................................................................................... 66
6. 參考文獻................................................................................................ 68
參考文獻
[1] M. Lotya, P. J. King, U. Khan, S. De and J. N. Coleman, 2010, High-concentration, surfactant-stabilized graphene dispersions, ACS nano 4, 3155-3162.
[2] X. Y. Zhang, A. C. Coleman, N. Katsonis, W. R. Browne, B. J. van Wees and B. L. Feringa, 2010, Dispersion of graphene in ethanol using a simple solvent exchange method, Chem. Commun. 46, 7539-7541.
[3] D. Li, and R.B. Kaner, 2008, MATERIALS SCIENCE:Graphene-Based Materials, Science, 320, 1170-1172.
[4] A.K. Geim, and S. Novoselovk, 2007, The rise of graphene, Nature Materials, 6, 183-191.
[5] R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, and A.K. Bhowmick, 2011, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites, Progress in Polymer Science 36, 5, 638-670.
[6] V.C. Tung, M.J. Allen, Y. Yang, and R.B. Kaner, 2008, High-throughput solution processing of large-scale graphene, Nature Nanotechnology, 4, 25-29.
[7] D.C. Elias, , R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A. K. Geim, and K.S. Novoselov, 2009, Control of Graphene’s Propertiesby Reversible Hydrogenation: Evidence for Graphane, 323, 610-613.
[8] S. Park, and R.s. Ruof, 2010, Chemical methods for the production of graphenes, Nature Nanotechnology 4, 217-224.
[9] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen, and a.S. S. Pei, 2008, Graphene segregated on Ni surfaces and transferred to insulators, Applied Physics Letters 93, 113103-113101.
[10] Z. Y. Juang, C. Y. Wu, A. Y. Lu, C. Y. Su, K. C. Leou, F. R. Chen, and C. H. Tsai, 2010, Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process, Carbon, 48, 3169-3174.
[11] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and a.J. Kong, 2009, Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letter 9, 1, 30-35.
[12] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff, 2009, Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils, Science 324, 1312-1314.
[13] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, 2009, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457, 5, 706-710.
[14] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, and W. A. d. Heer, 2006, Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science 312, 1191-1196.
[15] F. Varchon, R. Feng, J. Hass, X. Li, B.N. Nguyen, C. Naud, P. Mallet, J. Y. Veuillen, C. Berger, E. H. Conrad, and a. L. Magaud, 2007, Electronic Structure of Epitaxial Graphene Layers on SiC: Effect of the Substrate, Physical Review Letters 99, 126805-126801~126805-126804.
[16] W. Heer, A. d., C. Berger, X. Wua, P. N. First, E. H. Conrada, X. Li, T. Li, M. Sprinklea, J. Hassa, M.L. Sadowski, M. Potemski, and G.e. Martinezb, 2007, Epitaxial graphene, Solid State Communications 143, 92-100.
[17] J. Hass, W.A.d. Heer, and E.H. Conrad, 2008, The growth and morphology of epitaxial multilayer graphene, Journal of Physics: Condensed Matter 20, 323202-323201~323202-323227.
[18] J. Hass, R. Feng, T. Li, X. Li, Z. Zong, W.A.d. Heer, P.N. First, E.H. Conrada, C.A. Jeffrey, and C. Berger, 2006,Highly ordered graphene for two dimensional electronics, Applied Physics Letters 89, 143106-143101~143106-143103.
[19] M. Sprinkle, J. Hicks, A. Tejeda, A. Taleb-Ibrahimi, P. evre, Bertran, H. Tinkey, M.C. Clark, P. Soukiassian, D. Martinotti, J. Hass, and E.H. Conrad, 2010, Multilayer epitaxial graphene grown on the surface; structure and electronic properties, Journal of Physics D: Applied Physics 43, 374006-374001~ 374006-374012.
[20] J. Hass, F. Varchon, J.E.M. ´n-Otoya, M. Sprinkle, N. Sharma, W.A.d. Heer, C. Berger, P.N. First, L. Magaud, and E.H. Conrad1, 2008, Why Multilayer Graphene on 4H-SiC (000-1) Behaves Like a Single Sheet of Graphene, Physical Review Letters, 100, 125504-125501~125504-125504.
[21] N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, and J. Chen, 2007, One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite, Advanced Functinal Material 18, 1518-1525.
[22] X. Zhang, A.C. Coleman, N. Katsonis, W.R. Browne, B.J.v. Wees, and B.L. Feringa, 2010, Dispersion of graphene in ethanol using a simple solvent exchange method, Chemical Communication 46, 7539-7541.
[23] S. Vadukumpully, J. Paul, and S. Valiyaveettil, 2009, Cationic surfactant mediated exfoliation of graphite into graphene flakes, Carbon 47, 3288-3294.
[24] D. Yang, A. Velamakanni, G.l. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A.V. Jr., and R.S. Ruoff, 2009, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon 47, 145-152.
[25] Z. Fan, K. Wang, T. Wei, J. Yan, L. Song, and B. Shao, 2010, An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder, Carbon 48, 1686-1689.
[26] V.H. Pham, T.V. Cuong, S.H. Hur, E.W. Shin, J.S. Kim, J.S. Chung, and E.J. Kim, 2010, Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating, Carbon 48, 1945-1951.
[27] L. Zhang, J. Liang, Y. Huang, Y. Ma, Y. Wang, and Y. Chen, 2009, Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation, Carbon 47, 3365-3368.
[28] V. Sridhar, J. H. Jeon, and I. K. Oh, 2010, Synthesis of graphene nano-sheets using eco-friendly chemicals and microwave radiation, Carbon 48, 2953-2957.
[29] 吳至彧, 柳克強,及 蔡春鴻, 利用化學氣相沉積法合成數層石墨烯以及其透明導電薄膜之研究. 98, 國立清華大學 工程與系統科學系 碩士論文.
[30] 黃建維,及 邱博文, 高品質石墨烯之化學氣相沉積成長與基礎電性之研究. 99, 國立清華大學 電子工程研究所 碩士論文.
[31] S. Bae, HyeongkeunKim, Y. Lee, XiangfanXu, J. S. Park, YiZheng, J. Balakrishnan, TianLei, H.R. Kim, Y.I. Song, Y. J. Kim, K.S. Kim, B.O. zyilmaz, Jong-HyunAhn, B.H. Hong, and S. Iijima, 2010, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology 5, 574-578.
[32] 陳建, 黃桂榮, 2009,化學分散法製備石墨烯及結構表徵, 炭素技術, 28, 4, 10-15.
[33] C.H. Lui, L. Liu, K.F. Mak, G.W. Flynn, and T.F. Heinz, 2009, Ultraflat graphene, Nature 412, 339-341.
[34] I.F. Herbut, V.J. ic, and O. Vafek, 2008, Coulomb Interaction, Ripples, and the Minimal Conductivity of Graphene, Physical Review Letters 100, 046403-046401~046403-046404.
[35] M.I. Katsnelson, and A.K. Geim, 2008, Electron scattering on microscopic corrugations in graphene Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 366, 1863, 195-204.
[36] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.H. Smet, K.V. Klitzing, and A. Yacoby, 2007, Observation of electron–hole puddles in graphene using a scanning single-electron transistor, Nature Physics 4, 144-148.
[37] A. Deshpande, W. Bao, F. Miao, C.N. Lau, and B.J. LeRoy, 2009, Spatially resolved spectroscopy of monolayer graphene on SiO2, Physical Review B 79, 205411-205417.
[38] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, and A. K. Geim, 2006, Strong Suppression of Weak Localization in Graphene, Physical Review Letters 97, 016801-016801~016801-016804.
[39] X. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G. L. Zhang, and F. B. Zhang, 2008, Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation, Advanced Materials 20, 23, 4490-4493.
[39] C. Chen, W.X. Kong, H.M. Duana, and J. Zhang, 2014, Theoretical simulation of reduction mechanism of graphene oxide in sodium hydroxide solution, Physical Chemistry Chemical Physics 16, 12858-12864.
[41] K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J. M. Kim, K.S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, 2009, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature 457, 706-710.
[42] Y. Zhou, Q.B., B. Varghese, L. A. L. Tang, and C. H. S. Chow, K. Tan, and K. P. Loh, 2009, Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing, Advanced Materials 22,1, 67-71.
[43] M. J. Allen, V.C.T., Lewis Gomez, Z. Xu, M. C. Li, and C. Z. Kurt, S. Nelson, R. B. Kaner, and Y. Yang, 2009, Soft Transfer Printing of Chemically Converted Graphene, Advanced Materials 21, 20, 2098-2102.
[44] S. Li, L. Ci, W. Gao, and P.M. Ajayan, 2009, Transfer Printing of Graphene Using Gold Film, ACS nano 3, 6, 1353-1356.
[45] Y. Zhou, Q. B., B. Varghese, L. A. L. Tang, and C. H.S. Chow, K. Tan, and K. P. Loh, 2009, Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing, Advanced Materials 22, 1, 67-71.
[46] Q. W. Zhong, D. Wang, S. Kim, S. Y. Kim, Y. Hu, M. K. Yakes, T. D. Zhen, S. R. Marder, C. Berger, W. P. King, P. E. Sheehan, and E. Riedo, 2010, Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics 328, 5984, 1373-1376.
[47] S.P. Pang, H.N.T., X.L. Feng, and Klaus Mu¨llen, 2009, Patterned Graphene Electrodes from Solution-Processed Graphite Oxide Films for Organic Field-Effect Transistors, Advanced Materials 21, 34, 3488-3491.
[48] W. S. Hummers, R. E. Offeman, 1958, Preparation of Graphitic Oxide. Journal of the American Chemical Society 80, 6, 1339.
[49] X Han, Y Chen, H Zhu, C Preston, J Wan, Z Fang, L Hu,2013, Scalable, printable, surfactant-free graphene ink directly from graphite, Nanotechnology 24 ,20, 205304.
[50] I. Janowska, K. Chizari, O. Ersen, S. Zafeiratos, D. Soubane, V. Da Costa, V. Speisser, C. Boeglin, M. Houlle, D. Begin, D. Plee, M. J. Ledoux, C. P. Huu, 2010, Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia, Nano Reserch 3,2, 126-137.
[51] S. R. Wang, Y. Zhang, N. Abidi, L. Cabrales, 2009, Wettability and surface free energy of graphene films, Langmuir 25, 18, 11078-11081.
[52] X. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G. L. Zhang, F. B. Zhang, 2008, Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation, Advanced Materials 20, 23, 4490-4493.
[53] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, 2006, Graphene-based composite materials, Nature 442, 7100, 282-286.
[54] I. Janowska, K. Chizari, O. Ersen, S. Zafeiratos, D. Soubane, V. Da Costa, V. Speisser, C. Boeglin, M. Houlle, D. Begin, D. Plee, M. J. Ledoux, C. P. Huu, 2010, Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia, Nano Reserch 3,2, 126-137.
[55] L. Ding, Y. F. E, L. Z. Fan, S. H. Yang, 2013, Growing vertical ZnO nanorod arrays within graphite: efficient isolation of large size and high quality single-layer graphene,
Chemical Communications 49, 6286-6288.
[56] U. Khan, A. O'Neill, M. Lotya, S. De, J. N. Coleman, 2010, High-Concentration Solvent Exfoliation of Graphene, Small 6, 7, 864-871.
[57] I. Janowska, K. Chizari, O. Ersen, S. Zafeiratos, D. Soubane, V. Da Costa, V. Speisser, C. Boeglin, M. Houlle, D. Begin, D. Plee, M. J. Ledoux, C. P. Huu, 2010, Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia, Nano Reserch 3, 2, 126-137.
[58] S. H. Hur, D. Y. Khang, C. Kocabas, J. A. Rogers, 2004, Nanotransfer printing by use of noncovalent surface forces: Applications to thin-film transistors that use single-walled carbon nanotube networks and semiconducting polymers. Applied Physics Letters 85, 23, 5730.
[59] Y. Zhou, Q. L. Bao, B. Varghese, L.A.L. Tang, C. K. Tan, C. H. Sow, et al. , 2009, Microstructuring of Graphene Oxide Nanosheets Using Direct Laser Writing. Advanced Materials 22, 1, 67-71.
[60] Z. Q. Wei, D. E. Barlow, P. E. Sheehan, 2008, The Assembly of Single-Layer Graphene Oxide and Graphene Using Molecular Templates. Nano Letters 8,10, 3141-3145.
[61] S. P. Pang, H. N. Tsao, X. L. Feng, K. Mullen, 2009, Patterned Graphene Electrodes from Solution-Processed Graphite Oxide Films for Organic Field-Effect Transistors. Advanced Materials 21, 34, 3488-3592.
[62] M. J. Allen, V. C. Tung, L. Gomez, Z. Xu, L. M. Chen, K. S. Nelson, et al., 2009, Soft Transfer Printing of Chemically Converted Graphene. Advanced Materials 21, 20, 2098-2102.
[63] Z. Q. Wei, D. B. Wang, S. Kim, S. Y. Kim, Y. K. Hu, M. K. Yakes, et al., 2010, Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics, Science 328, 5984, 1373-1376.
[64] C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, et al., 2007, Rayleigh imaging of graphene and graphene layers, Nano Letters 7, 9, 2711-2717.
[65] P. S. Feng, Z. J. Ping, D. J. Hong, R. W. Cai, C. H. Ming, 2010, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids, Carbon ,48, 4466-4474.
[66] Z. J. Ping, P. S. Feng, R. W. Cai, G. Libo, and C. H. Ming, 2010, Efficient preparation of large-area graphene oxide sheets for transparent conductive films, ACS Nano 4, 9, 5245-5252.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top