(3.210.184.142) 您好!臺灣時間:2021/05/09 09:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃德荃
研究生(外文):Te-ChuanHuang
論文名稱:用STAR探測器在sqrt(s) = 500 GeV的質子質子對撞中,渺子辨別的分析以及J/psi粒子生成截面的計算
論文名稱(外文):The Muon identification and the measurement of the J/psi cross section in p+p collision at sqrt(s) = 500 GeV at the STAR experiment
指導教授:楊毅楊毅引用關係
指導教授(外文):Yi Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:84
中文關鍵詞:STARMTDDimuonParticle identificationQuarkoniumJ/psi
外文關鍵詞:STARMTDDimuonParticle identificationQuarkoniumJ/psi
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
STAR實驗是位於美國布魯克海文國家實驗室(Brookhaven National Laboratory),相對論性重離子對撞機(Relativistic Heavy Ion Collider)中,最主要的實驗之一。最近,STAR實驗安裝了新的渺子探測器 -- Muon Telescope Detector (MTD)。在2013年時,完成了約63%的安裝,並於2014年全部安裝完成。這是我們第一次能夠在STAR使用雙渺子衰變去研究Quarkonia的物理。

我們使用了三種方法在2013年收集的質心能量為500 GeV的質子質子對撞數據中研究了渺子辨別的分析。結果表示,三種方法都能夠在p_T 〉 3 GeV/c的範圍裡有高於80%的辨別效率。

另外,我們也應用了渺子辨別分析的結果研究J/psi粒子在相同的實驗數據中的生成截面(production cross section)。我們的結果跟使用雙電子衰變的分析結果,在p_T重疊的區域是非常吻合的,並且也非常符合CGC+NRQCD理論的預測。
The Solenoid Tracker at RHIC (STAR) is one of the major experiments in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. In 2013, a new detector – Muon Telescope Detector (MTD) is installed about 63% of the full system and completely installed in 2014. It provides an excellent opportunity to study heavy quarkonia physics using dimuon channel in the experiments.

We studied the muon identification using three different methods with proton-proton collision at sqrt(s) = 500 GeV data collected in 2013. The result shows that the muon identification efficiencies reaches about 80% with p_T 〉 3 GeV/c.

The measurement of the J/psi invariant cross section is also studied using dimuon decay channel with Likelihood Ratio method for muon identification. The results in dimuon channel are consistent with the results in dielectron channel in the overlap p_T region and have good agreement with the CGC+NRQCD prediction.
Abstract in Chinese .................. ................. i
Abstract in English ................................... ii
Acknowledgements................................... iii
Contents......................................... v
List of Tables ...................................... viii
List of Figures...................................... x
1 Introduction..................................... 1
2 Theory Reviews................................... 3
2.1 The Standard Model of particle physics ................... 3
2.2 Charmonium states and the J/ψ productions................... 6
2.3 Quantum Chromodynamics (QCD) and Quark-gluon Plasma (QGP) ................... 8
3 Experimental Setup ................................. 12
3.1 Relativistic Heavy Ion Collider........................ 12
3.2 The STAR detector .............................. 12
3.3 Magnet System ................................ 14
3.4 Time Projection Chamber (TPC)....................... 14
3.5 Time-of-Flight (ToF) ............................. 15
3.6 Muon Telescope Detector (MTD) ...................... 17
4 Data Samples .................................... 19
4.1 Datasets and the basic selections....................... 19
4.2 Monte Carlo Samples............................. 21
5 Muon Identification................................. 24
5.1 Muon candidates selections.......................... 24
5.2 Straight cut method.............................. 24
5.3 N-1iteration method ............................. 26
5.4 Likelihood ratio method ........................... 28
5.5 The muon identification efficiencies ..................... 29
5.5.1 Tag-and-Probe method........................ 29
5.5.2 Statistical errors ........................... 32
5.6 Systematic uncertainties ........................... 33
5.6.1 Signal extraction ........................... 33
5.6.2 Building the PDF ratios ....................... 34
5.6.3 pT smearing of the MC muons.................... 35
5.7 Results..................................... 36
6 Measurement of J/ψ cross section ......................... 43
6.1 Event selections................................ 43
6.2 J/ψ signal extraction............................. 43
6.3 J/ψ efficiencies and acceptances....................... 44
6.3.1 Vertex finding efficiency....................... 45
6.3.2 TPC tracking efficiency and TPC acceptance ......................47
6.3.3 MTD matching, MTD response, MTD trigger efficiencies and MTD acceptance .............................. 49
6.3.4 Muon identification efficiency.................... 51
6.4 Systematic uncertainties ........................... 53
6.4.1 Signal extraction ........................... 53
6.4.2 TPC tracking efficiency ....................... 54
6.4.3 MTD response efficiency....................... 55
6.4.4 Muon identification.......................... 56
6.4.5 Total uncertainties .......................... 58
6.5 Results .................................. 60
6.6 Future work.................................. 61
7 Conclusions..................................... 64
References........................................ 65
Appendix A Fitting results............................... 69
A.1 Fit results for muon identification efficiency ............................ 70
A.1.1  Single Gaussian function + 3rd order polynomials ....................70
A.1.2  Single Gaussian function + 4th order polynomials .................... 71
A.1.3  CrystalBallfunction+3rd order polynomials .................... 73
A.1.4  CrystalBallfunction+4th order polynomials .................... 74
A.1.5 Fits for Likelihood Ratio method using the PDF ratios with different methods................................ 76
A.2 Signal extraction for the cross section using different fit models ............................... 78
Appendix B Non-prompt J/ψ Fraction........................ 80
B.1 Event selections................................ 80
B.2 J/ψ-hadron correlation............................ 80
B.3 Results..................................... 83
B.4 Futurework.................................. 84
[1] K. A. Olive et al., “Review of Particle Physics, Chin. Phys., vol. C38, p. 090001, 2014.

[2] W. Cottingham and D. Greenwood, An Introduction to the Standard Model of Particle Physics. Cambridge University Press, 2007. [Online]. Available: https://books.google.com.tw/books?id= Dm36BYq9iu0C

[3] F. Halzen and A. D. Martin, “Quarks and leptons: An introductory course in modern particle physics, 1984, new York, USA: Wiley ( 1984) 396p.

[4] R. Pathria and P. Beale, Statistical Mechanics. Elsevier Science, 2011. [Online]. Available: https://books.google.com.tw/books?id= KdbJJAXQ-RsC

[5] N. Brambilla et al., “Heavy quarkonium physics, 2004.

[6] M. Beneke, “Nonrelativistic effective theory for quarkonium production in hadron collisions, in The Strong interaction, from hadrons to partons: Proceedings, 24th SLAC Summer Institute on Particle Physics (SSI 96), Stanford, Calif., 19-30 Aug 1996, 1997. [Online]. Available: http://www.slac.stanford.edu/pubs/confproc/ssi96/ssi96-025.html

[7] M. Kramer, 1, “Quarkonium production at high-energy colliders, Prog. Part. Nucl. Phys., vol. 47, pp. 141–201, 2001.

[8] Y.-Q. Ma and R. Venugopalan, “Comprehensive Description of J/ψ Production in Proton-Proton Collisions at Collider Energies, Phys. Rev. Lett., vol. 113, no. 19, p. 192301, 2014.
[9] G. Aad et al., “Measurement of the differential cross-sections of inclusive, prompt and non-prompt production in proton–proton collisions at, Nuclear Physics B, vol. 850, no. 3, pp. 387 – 444, 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0550321311002938

[10] B. Mohanty, “Exploring the QCD phase diagram through high energy nuclear collisions: An overview, PoS, vol. CPOD2013, p. 001, 2013.

[11] C. Adler. et al., “Disappearance of back-to-back high-pT hadron correlations in central Au + Au collisions at √sNN = 200 GeV, Phys. Rev. Lett., vol. 90, p. 082302, Feb 2003. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.90.082302

[12] G. Aad et al., “Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at √sNN = 2.76 TeV with the atlas detector at the LHC, Phys. Rev. Lett., vol. 105, p. 252303, Dec 2010. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevLett.105.252303

[13] “{STAR} detector overview, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 499, no. 2–3, pp. 624 – 632, 2003, the Relativistic Heavy Ion Collider Project: {RHIC} and its Detectors. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0168900202019605

[14] M. Anderson et al., “he {STAR} time projection chamber: a unique tool for studying high multiplicity events at {RHIC}, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 499, no. 2–3, pp. 659 – 678, 2003, the Relativistic Heavy Ion Collider Project: {RHIC} and its Detectors. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168900202019642

[15] S. Eidelman et al., Physics Letters, vol. B592, no. 1, 2004.

[16] H. Bichsel, “A method to improve tracking and particle identification in {TPCs} and silicon detectors, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 562, no. 1, pp. 154 – 197, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/ S0168900206005353

[17] Akindinov et al., “Performance of the alice time-of-flight detector at the lhc, The European Physical Journal Plus, vol. 128, no. 4, pp. 1–9, 2013. [Online]. Available: http://dx.doi.org/10.1140/epjp/i2013-13044-x

[18] L. Ruan, G. Lin, Z. Xu, K. Asselta, H. F. Chen, W. Christie, H. J. Craw- ford, J. Engelage, G. Eppley, T. J. Hallman, C. Li, J. Liu, W. J. Llope, R. Majka, T. Nussbaum, J. Scheblein, M. Shao, R. Soja, Y. Sun, Z. Tang, X. Wang, and Y. Wang, “Perspectives of a mid-rapidity dimuon program at the RHIC: a novel and compact muon telescope detector, Journal of Physics G Nuclear Physics, vol. 36, no. 9, p. 095001, Sep. 2009.

[19] T. C. Huang et al., “Muon Identification with Muon Telescope Detector at the STAR Experiment, 2016.

[20] M. Paterno, “Calculating efficiencies and their uncertainties, 2004.

[21] T. Sjostrand, S. Mrenna, and P. Z. Skands, “A Brief Introduction to
PYTHIA 8.1, Comput. Phys. Commun., vol. 178, pp. 852–867, 2008.

[22] A.Buckley,J.Ferrando,S.Lloyd,K.Nordström,B.Page,M.Rüfenacht, M. Schönherr, and G. Watt, “LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J., vol. C75, p. 132, 2015.

[23] Acosta et al., “Measurement of the j/ψ meson and b-hadron production cross sections in pp collisions at √s = 1960 GeV, Phys. Rev. D, vol. 71, p. 032001, Feb 2005. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevD.71.032001


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔