(18.207.253.100) 您好!臺灣時間:2021/05/06 08:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳昆鴻
研究生(外文):Kun-HongWu
論文名稱:鈷鐵氧體薄膜在可撓式基板上的應變調製拉曼研究
論文名稱(外文):Raman study of strain-modulated CoFe2O4 epitaxial film on a flexible substrate
指導教授:陳宜君陳宜君引用關係
指導教授(外文):Yi-Chun Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:135
中文關鍵詞:鈷鐵氧體亞鐵磁性磁致伸縮可撓式雲母基板
外文關鍵詞:CoFe2O4magnetostrictionstrainmicaflexible
相關次數:
  • 被引用被引用:2
  • 點閱點閱:86
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鈷鐵氧體(CoFe2O4;CFO)是一種具有亞鐵磁性及磁異向性特徵的材料,並且因為磁致伸縮(magnetostriction)的特性,其在磁性感測器上的應用也被廣泛的討論,之前的文獻已顯示出CFO薄膜的磁性特徵會受到晶格形變的影響而改變。為了討論CFO與應變相關的機制,本研究中將CFO薄膜沉積在可撓式的雲母(mica)基板上,因此可藉由控制雲母基板的曲率半徑來改變施加在CFO薄膜上的應力大小,而應力會扭曲CFO的晶格。本研究中將利用拉曼光譜儀(Raman spectroscopy)量測鈷鐵氧薄膜在不同應力下聲子的振動行為,並且藉由觀察CFO A1g振動模態的頻移可以估算出其晶格常數的變化。之後利用變溫拉曼實驗觀察其振動峰半高寬在不同應力下的變化,並討論應力對CFO發生陽離子躍遷效應的影響,接著利用拉曼振動峰的頻移,觀察施加不同應力時對磁致伸縮效應的影響。最後利用磁力顯微鏡(Magnetic force microscopy;MFM),進一步探討應力對CFO薄膜表面磁矩的影響。
Cobalt ferrite, CoFe2O4, has unique magnetic properties among other spinel ferrites such as high magnetocrystalline anisotropy constant as well as a large magnetostriction constant, which can change its magnetic properties by exert different stress on it, or will change its strain state under a different magnetic field.
The response of CoFe2O4 thin film under different strain state is studied by Raman spectroscopy. We mainly observed the shift of normal mode’s frequency under different strain, and the full width of half maximum under varies temperature with different strain state. CoFe2O4 thin film was deposited on a flexible Muscovite(mica) substrate, which we can exert a stress on CoFe2O4 thin film by curving mica substrate.
The Raman modes show an increase in frequency when increasing an in-plane compress strain. In contrast, it shows a decrease in frequency when increasing an in-plane tensile strain. And the energy that cation migration needs become fewer with increasing stress, thus we can observe cation migration effect with lower temperature.
Different strain state will distort CoFe2O4’s lattice to change the direction of CoFe2O4’s easy axis and affect it magnetic properties. Moreover, different stress on CoFe2O4 will even change it lattice volume.

摘要 I
Abstract II
誌謝 VI
目錄 VII
表目錄 X
圖目錄 X
第一章 緒論 1
第二章 磁性原理與文獻回顧 3
2.1磁性材料 3
2.1.1物質磁性簡介 3
2.1.2磁致伸縮原理 8
2.1.3 超交換交互作用 12
2.1.4 亞鐵磁性 13
2.1.5 鐵氧磁體的性質 14
2.2 文獻回顧 17
2.2.1 鈷鐵氧體基本性質 17
2.2.2 由拉曼觀察應力對晶格結構的影響 19
2.2.3 CFO陽離子躍遷效應 25
2.2.4 施加應力後對陽離子躍遷效應的影響 36
2.2.5 鈷鐵氧體磁致伸縮效應 42
第三章 實驗原理與方法 48
3.1拉曼光譜原理 48
3.1.1拉曼散射機制 48
3.1.2 拉曼散射的古典波動模型 50
3.1.3微拉曼(micro Raman)散射系統介紹 52
3.2掃描式探針顯微術(Scan Probe Microscopy) 53
3.2.1掃描式探針顯微術的工作原理 54
3.2.2原子力顯微鏡之系統架構(Atomic Force Microscopy) 55
3.2.3原子力顯微鏡成像原理 58
3.3磁力顯微鏡(MFM) 61
3.4實驗流程 65
第四章 結果與討論 68
4.1 受應力調變結構的拉曼光譜 69
4.1.1 鈷鐵氧體在雲母基板上的基本性質 69
4.1.2 鈷鐵氧體(CoFe2O4;CFO)的拉曼振動模態 72
4.1.3 計算不同曲率半徑的應力 76
4.1.4 轉偏振分析CFO薄膜在實驗室座標的晶格向量 79
4.1.5 受應力後鈷鐵氧體振動峰的變化 82
4.2受應力調變影響的陽離子躍遷效應 92
4.2.1 未施加應力的陽離子躍遷效應 92
4.2.2 施加不同應力後對陽離子躍遷的影響 95
4.3受應力調變影響的磁場中行為 114
4.3.1 在雲母片上之鈷鐵氧體薄膜的磁致伸縮現象 115
4.3.2 不同應力下的磁致伸縮現象 120
4.3.3 外加應力對CFO表面磁矩的影響 129
第五章 結論 131
參考文獻 133

1.K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim. Two-dimensional atomic crystals. P. Natl. Acad. Sci. USA, 102, 10451–10453, (2005).
2.P. Blake, et al. Give all authors up to 10. Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708, (2008).
3.G. Eda, G. Fanchini, and M. Chhowalla. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274, (2008).
4.K. Kim, Y. Zhao, H. Jang, S. Lee, J. Kim, J. Ahn, P. Kim, J. Choi, and B. Hong. “Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710, (2009).
5.Andres Castellanos-Gomez, Menno Poot, Albert Amor-Amorós, Gary A. Steele, Herre S.J. van der Zant, Nicolás Agraït , and Gabino Rubio-Bollinger, “Mechanical properties of freely suspended atomically thin dielectric layers of mica Nano Research, Volume 5, Number 8 ,550-557, (2012).
6.Essentials of Paleomagnetism: Second Web Edition.
7.姜政熙, “鎳鐵氧/鈦酸鍶鋇/鈦酸鍶磊晶薄膜之磁電藕合特性,成功大學,碩士論文,(2008).
8.Bruce M. Moskowitz, Hitchhiker's Guide to Magnetism (1991).
9.B.D CULLITY, C.D. GRAHAM, INTRODUCTION TO MAGNETIC MATERIALS, (2009).
10.簡永順, “釕酸鍶/鈷鐵氧體系統複合結構中的應力調製藕合研究,成功大學,碩士論文,(2012).
11.張煦、李學養 譯, “磁性物理學, 第五章 聯經出版社(1992).
12.宛德福, “磁性物理學 緒論 第一章 電子工業出版社 (1985).
13.Nicola Spaldin, Magnetic Materials, p107 (2003).
14.L. Gracia, A. Beltra´n, J. Andre´s, R. Franco, and J. M. Recio, “Quantum-mechanical simulation of MgAl2O4 under high pressure, PHYSICAL REVIEW B 66, 224114 (2002).
15.T. Dhakal, D. Mukherjee, R. Hyde, P. Mukherjee, M. H. Phan, H. Srikanth, and S. Witanachchi. “Magnetic anisotropy and field switching in cobalt ferrite thin films deposited by pulsed laser ablation, JOURNAL OF APPLIED PHYSICS 107, 053914 (2010).
16.R. Sato Turtelli a,∗, M. Atif a, N. Mehmooda, F. Kubelb, K. Biernackad, W. Linertc, R. Grossingera,Cz. Kapustad, M. Sikorad. “Interplay between the cation distribution and production methods in cobalt ferrite Materials Chemistry and Physics 132 832– 838 (2012).
17.M. Khodaei, S. A. Seyyed Ebrahimi, Yong Jun Park, Jong Mok Ok, Jun Sung Kim, Junwoo Son, Sunggi Baik. “Enhancement of in-plane magnetic anisotropy in (111)-oriented Co0.8Fe2.2O4 thin film by deposition of PZT top layer Appl. Phys. A 117:1153–1160 (2014).
18.Qi -C. Sun, Christina S. Birkel, Jinbo Cao, Wolfgang Tremel, and Janice L. Musfeldt, “Spectroscopic Signature of the Superparamagnetic Transition and Surface Spin Disorder in CoFe2O4 Nanoparticles , American Chemical Society VOL. 6, NO. 6, 4876–4883 (2012).
19.H. Zheng, J. Wang, S. E. Lofland, Z. Ma,L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh. “Multiferroic BaTiO3-CoFe2O4 Nanostructures, SCIENCE VOL 303 30 JANUARY (2004).
20.O. Chaix-Pluchery, C. Cochard, P. Jadhav, J. Kreisel, N. Dix, F. Sa´nchez, and J. Fontcuberta, “Strain analysis of multiferroic BiFeO3-CoFe2O4 nanostructures by Raman scattering. APPLIED PHYSICS LETTERS 99, 072901 (2011).
21.Michael Foerster , Milko Iliev , Nico Dix , Xavier Martí , Mykhailo Barchuk , Florencio Sánchez , and Josep Fontcuberta. “The Poisson Ratio in CoFe2O 4 Spinel Thin Films. Adv. Funct. Mater. 22, 4344–4351 (2012).
22.Mark R. De Guire, Robert C. O’Handley and Gretchen Kalonji, “The cooling rate dependence of cation distributions in CoFe2O4 , J. Appl. Phys. 65, 3167 (1989).
23.T Yu, Z X Shen, Y Shi and J Ding, “Cation migration and magnetic ordering in spinel CoFe2O4 powder: micro-Raman scattering study, J. Phys.: Condens. Matter 14 L613–L618 (2002).
24.Y. Y. Liao, Y. W. Li, Z. G. Hu, and J. H. Chu. “Temperature dependent phonon Raman scattering of highly a-axis oriented CoFe2O4 inverse spinel ferromagnetic films grown by pulsed laser deposition, APPLIED PHYSICS LETTERS 100, 071905 (2012).
25.Chul Sung Kim, Seung Wha Lee, Seung Iel Park, Jae Yun Park and Young Jei Oh, “Atomic migration in Ni–Co ferrite, J. Appl. Phys. 79, 5428 (1996).
26.Deepanshu Sharma and Neeraj Khare, “Tuning of optical bandgap and magnetization of CoFe2O4 thin films , APPLIED PHYSICS LETTERS 105, 032404 (2014).
27.R.J. Lancashire, “ An Introductory course at UWI, Mona, JAMAICA, Lecture 3.
28.俞姿宇, “晶場理論 (crystal field theory, CFT).
29.Crystal Field Theory : WOLFRAM RESEARCH.
30.Y H Hou, Y J Zhao, Z W Liu, H Y Yu, X C Zhong, W Q Qiu, D C Zeng1 and L S Wen1, “Structural, electronic and magnetic properties of partially inverse spinel CoFe2O4 a first-principles study, J. Phys. D: Appl. Phys. 43 (2010).
31.Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun,Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can, “Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study, 物理学报Acta Phys. Sin. Vol. 62, No. 16 (2013).
32.C. Y. Tsai, H. R. Chen, F. C. Chang, W. C. Tsai, H. M. Cheng, Y. H. Chu, C. H. Lai, and W. F. Hsieh, “Stress-mediated magnetic anisotropy and magnetoelastic coupling in epitaxial multiferroic PbTiO3-CoFe2O4 nanostructures, APPLIED PHYSICS LETTERS 102, 132905 (2013).
33.Atif Muhammad, Reiko Sato-Turtelli, Martin Kriegisch, Roland Grössinger, Frank Kubel, and Thomas Konegger, “Large enhancement of magnetostriction due to compaction hydrostatic pressure and magnetic annealing in CoFe2O4 JOURNAL OF APPLIED PHYSICS 111, 013918 (2012).
34.汪建民, 材料分析, 中國材料科學學會,(1998).
35.John R. Ferraro, INTRODUCTORY RAMAN SPECTROSCOPY.
36.黃彥欽, “混和相磊晶鐵酸鉍薄膜的相變化, 成功大學, 碩士論文, (2010).
37.黃英碩, “掃描探針顯微術的原理及應用, 科儀新知第二十六卷第四期 94.2 (2005).
38.陳力俊, “材料電子顯微鏡學,行政院國家科學委員會精密儀器發展中心, (2003).
39.王洸富, “屏蔽電荷對108度域壁成核動態機制之影響, 成功大學, 碩士論文, (2010).
40.林明彥、張嘉升、黎文龍, “原子力顯微儀的原理, 科儀新知第二十七卷第二期94.10 , (2005).
41.郭政宜、林茱瑩、吳仲卿, “磁力探針顯微術簡介及其應用, 奈米通訊,第十五卷, 第四期, (2008).
42.“Magnetic Force Microscopy (MFM) Applicable to Dimension™ Series and MultiMode™ Systems, Digital Instruments, (1996).
43.P. Chandramohan, M.P.Srinivasan, S.Velmurugan, S.V.Narasimhan, “Cation distribution and particle size effect on Raman spectrum of CoFe2O4 “Journal ofSolidStateChemistry184 (2011)
44.J. Larry Verble, “Temperature-dependent light-scattering studies of the Verwey transition and electronic disorder in magnetite, PHYSICAL REVIEW B VOLUME 9, NUMBER 12 15 JUNE (1974).
45.成功大學微奈米科技研究中心“薄膜應力量測儀操作手冊.
46.Fang, WL , “Determination of the elastic modulus of thin film materials using self-deformed micromachined cantilevers , Journal of Micromechanics and Microengineering , 9 , p230-235 , (1999).
47.王輝清,陳俊維,陳榮陞,“多層薄膜應力分析及探討,中國機械工程學會第二十四屆全國學術研討會論文集 (2007).
48.M. N. Iliev,D. Mazumdar,J. X. Ma,A. Gupta, F. Rigato, J. Fontcuberta, “Monitoring B-site ordering and strain relaxation in NiFe2O4 epitaxial films by polarized Raman spectroscopy, PHYSICAL REVIEW B 83, 014108 (2011).
49.Christopher L. Muhich, Victoria J. Aston, Ryan M. Trottier, Alan W. Weimer, and Charles B. Musgrave. First-Principles Analysis of Cation Diffusion in Mixed Metal Ferrite Spinels. Chem Mater, 28, 214−226 (2016).
50.DONALD S. MCCLURE, “THE DISTRIBUTION OF TRANSITION METAL CATIONS
IN SPINELS , J. Phys. Chem. Solidr Pergamon Press . Vol. 3. pp. 311-317 (1957).
51.J. D. DUNITZ and L. E. ORGEL, “ELECTRONIC PROPERTIES OF OXIDES-II TRANSITION-METAL, J. Phys. Chem. Solids Pergamon Press Vol. 3. pp. 318-323 (1957).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔