(3.210.184.142) 您好!臺灣時間:2021/05/16 01:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡寒羽
研究生(外文):Han-YuTsai
論文名稱:渦流式風速計之風向適應性設計研究
論文名稱(外文):Studies of Novel Vortex Wind Anemometers with Wind Direction Adaptability
指導教授:呂宗行
指導教授(外文):Tzong-Shyng Leu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:113
中文關鍵詞:渦流溢放風向適應性渦流式風速計
外文關鍵詞:Vortex SheddingVortex AnemometerWind Adaptability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用圓柱渦流溢放現象開發一款適用於大氣紊流場之渦流式風速感測器,大氣風場之風向為非定常變化,故必須在圓柱上尋找能夠分析任意來流風向之區域位置。論文架構分為兩部分,首先使用數值模擬的方法,評估出在圓柱上需要設置三開孔三訊號源或四開孔兩訊號源即能夠分析出360˚任意來流之風速。第二部分為風洞實驗,利用數值模擬分析出來之結果作為探討依據,若原始訊號濾波後其 值大於1,則判斷為可用來分析風速之訊號,在此整體結果四開孔比三開孔訊號品質佳;風向適應性中兩者皆能夠分析出任意風向之風速;最後在風向評估中以壓力訊號源之 ,粗略判斷風之來向,其中三開孔呈現結果同時段擷取訊號可能得到兩組風向位置,而四開孔可望能得知360˚風向,故四開孔風向解析度比三開孔高。綜合以上結果加上成本考量,四開孔兩訊號源只需要兩個壓力轉換器即能量測風速,故渦流式風速計選擇四開孔兩訊號源方式做為量測風速訊號之依據。
This thesis uses the vortex shedding phenomena for develop a new wind anemometer. This vortex wind anemometer has the advantages of simple cylindrical shape with long-term stability, well repeatability, low maintenance costs, and absence of moving parts. However, the development of the new vortex wind anemometer also has to face the challenges, including the non-stationary atmospheric turbulence field, the unknown wind direction. Therefore, one must consider the wind adaptability for the new vortex wind anemometer. To find the locations on the cylinder where signal can be analyzed is necessary. In this research, two research methods, CFD numerical simulation and wind tunnel experiments are used to study the new vortex wind anemometer. In the CFD numerical simulation, the assessment results are divided into “Three Holes” and “Four Holes” configurations on the cylinder surface. The “Three Holes” configuration is using pressure difference signals from three pressure holes on the cylinder surface, and the “Four Holes” configuration only using two signals on the cylinder surface, to analyze wind speed for different wind directions. In the wind tunnel experiment refer to the CFD result. After the raw signal transferring by filter process, if its SNR is higher than 1, deciding the raw signal is usable. The result shows that the Four Holes signal quality is better than “Three Holes” configuration. In other hand, the wind tunnel experiment presents that both “Three Holes” and “Four Holes” configurations of the new vortex wind anemometer can measure wind speed from any wind direction. One can also try to determine the wind direction according to pressure coefficient measurements from “Three Holes” and “Four Holes” configurations. The results find that the wind direction resolution of Four Holes is higher than Three Holes. Therefore, it is suggested use the “Four Holes” configuration for the new vortex anemometer in this stud.
摘要---------------------------------------------------------------------------------- I
Abstract--------------------------------------------------------------------------- III
誌謝------------------------------------------------------------------------------- X
目錄------------------------------------------------------------------------------- XI
表目錄-------------------------------------------------------------------------- XV
圖目錄 XVI
符號索引 XXIV
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.2.1 風速量測儀器 1
1.2.2 圓柱流場 4
1.2.3 渦流溢放之應用 7
1.2.4 訊號處理 8
1.3 研究動機與目的 9
第二章 流場模擬與實驗規劃 19
2.1 流場模擬 19
2.1.1 數值模擬軟體CFD–ACE+ 19
2.1.2 流體統御方程式 20
2.1.3 網格系統與幾何形狀設計 22
2.1.4 邊界條件設定 23
2.1.5 數值模擬之網格測試 23
2.2 實驗架設 24
2.2.1 風洞實驗 24
2.2.1.1 低速開放式風洞 24
2.2.1.2 渦流式風速計模型 24
2.2.1.3 皮托管、薄膜式壓力轉換器 25
2.2.1.4 資料擷取系統 27
2.2.2 管長損耗實驗架設 27
2.2.2.1 管長實驗之流程 28
2.2.2.2 管長實驗設定之參數 28
2.2.2.3 資料擷取系統 29
第三章 訊號處理與分析方法 39
3.1 渦流溢放之參數 39
3.1.1 雷諾數 39
3.1.2 無因次頻率(Strouhal Number) 40
3.2 訊號分析 40
3.2.1 快速傅立葉轉換(Fast Fourier Transform) 41
3.2.2 希爾伯特-黃轉換(Hilbert-Huang Transform) 42
3.3 訊號處理與濾波方法 46
3.3.1 濾波程序介紹 46
3.3.2 Data Binning與瞬時風速輸出 47
3.4 訊號之參數分析 48
3.4.1 相關係數(Normalized Cross Correlation, NCC) 48
3.4.2 分貝 49
3.4.3 SNR 49
3.4.4 誤差 50
第四章 結果與討論 52
4.1 數值模擬 52
4.1.1 模擬圓柱表面上壓力之分布 52
4.1.2 風向適應性分析結果 53
4.1.2.1 模擬圓柱使用單一壓力源擾動之分析 54
4.1.2.2 模擬圓柱使用兩壓力源擾動之分析 55
4.1.2.2.1 模擬圓柱雙孔擷取擾動之分析 57
4.1.2.2.2 模擬圓柱三孔擷取擾動之分析 57
4.1.2.2.3 模擬圓柱四孔擷取擾動之分析 58
4.2 管長損耗實驗 58
4.3 風洞實驗 59
4.3.1 圓柱表面上壓力之分析 60
4.3.2 風向適應性分析結果 61
4.3.2.1 圓柱三孔擷取點擾動之分析 62
4.3.2.2 圓柱四孔擷取點擾動之分析 63
4.3.3 風向預估 65
第五章 結論與未來工作 107
5.1 結論 107
5.2 未來工作 108
參考文獻 109

[1]D. W. Bryer, Pressure-probe methods for determining wind speed and flow direction., Hm Stationery Office, 1971.
[2]B. B. Hicks, Propeller anemometers as sensors of atmospheric turbulence., Boundary-Layer Meteorology, vol. 3, pp. 214-228, 1972.
[3]J. C. Wyngaard, Cup, propeller, vane, and sonic anemometers in turbulence research., Annual Review of Fluid Mechanics, vol. 13, pp. 399-423, 1981.
[4]P. C. Pien, Five-Hole spherical pitot tube., No. Dtmb-1229. David Taylor model Basin Washington DC, 1958.
[5]A. R. Porro, pressure probe designs for dynamic pressure measurements in a supersonic flow field., Instrumentation in Aerospace Simulation Facilities, 2001. 19th International Congress on ICIASF, pp. 417 - 426, 2001.
[6]R. M. Eckman, A pressure-sphere anemometer for measuring turbulence and fluxes in hurricanes., Journal of Atmospheric and Oceanic Technology, vol. 24, pp. 994-1007, 2007.
[7]鄭啟明, 曾威仁, and 蔡明樹, 以光達進行自然風場風速剖面遙測之初探, 建築學報, vol. 78_S, pp. 83-100, 2011.
[8]Y. S. Tsai, C. Wu, C. Li, and P. H. Lin, Intertidal zone wind profiling using lidar measurement., Proceedings of The 35th Ocean Engineering Conference, Taiwan National Sun Yat-Sen University, 2013.
[9]M. V. Dyke, An album of fluid motion., Parabolic, Palo Alto, 1982.
[10]E. Berger and R. Wille, Periodic flow phenomena., Annual Review of Fluid Mechanics, vol. 4, pp. 313-340, 1972.
[11]A. Roshko, Perspectives on bluff body aerodynamics., Journal of Wind Engineering and Industrial Aerodynamics, vol. 49, pp. 79-100, 1993.
[12]B. M. Sumer and J. Fredsøe, Hydrodynamics around cylindrical structures., No. 12. World Scientific, 1997.
[13]J. H. Lienhard, Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders., Technical Extension Service, Washington State University, 1966.
[14]C. C. Hu, J. J. Miau, and J. H. Chou, Instantaneous vortex-shedding behaviour in periodically varying flow., Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 458, p. 2002, 2002.
[15]I. V. d. Hoven, Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour., Journal of Meteorology, vol. 14, pp. 160-164, 1957.
[16]S. G. Durand, Vortex anemometer for measurement of both speed and direction of the wind., ISA Transactions, vol. 32, pp. 393-396, 1993.
[17]M. L. S. Indrusiak and S. V. Möller, Wavelet analysis of unsteady flows: Application on the determination of the Strouhal number of the transient wake behind a single cylinder., Experimental Thermal and Fluid Science, vol. 35, pp. 319-327, 2011.
[18]N. E. Huang, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis., Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences., vol. 454, 1998.
[19]J. J. Miau, C. C. Hu, and J. K. Tu, Hilbert and Wavelet analyses of unsteady, three-dimensional characteristics of vortex shedding from a circular cylinder., Journal of the Chinese Society of Mechanical Engineers, vol. 28, pp. 99-109, 2007.
[20]J. J. Miau, J. K. Tu, and T. W. Liao, Insights into vortex shedding with data analysis., Journal of Fluid Science and Technology, vol. 4, pp. 415-429, 2009.
[21]S. V. Möller, The Hilbert-Huang Transform: An application on the shedding process., 2012.
[22]陳慕堯, 圓柱渦流溢放現象應用於風速感測器設計之研究, 國立成功大學航空太空研究所碩士論文, pp. 1-167, 2015.
[23]C. K. Choi and D. K. Kwon, Wind tunnel blockage effects on aerodynamic behavior of bluff body., Wind Struct INT J, vol. 1, pp. 351-364, 1998.
[24]M. M. Zdravkovich, Flow around circular cylinders, vol. 1. Fundamentals., Journal of Fluid Mechanics, vol. 350, pp. 377-378, 1997.
[25]蔡星汶, 圓柱表面流場在臨界區之空氣動力實驗研究., 國立成功大學航空太空研究所碩士論文, 2006.
[26]S. Okamura, The Short Time Fourier Transform and Local Signals., Dissertations. Paper 58, 2011.
[27]B. Boashash, Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals., Proceedings of the IEEE, vol. 80, pp. 520 - 538, 1992.
[28]N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, et al., The Empirical Mode Decomposition and Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis., Proceedings of the Royal Society London A, pp. 454:903–995, 1998.
[29]Z. Wu, N. E. Huang, and X. Chen, The multi-dimensional ensemble empirical mode decomposition method., World Scientific Publishing Company, vol. 1, pp. 339–372, 2009.
[30]葉建鋒, 渦流流量計信號與性能分析, 國立成功大學航空太空研究所碩士論文, 2003.
[31]B. Sunden, Tubes, Crossflow over., Thermopedia, 2011.
[32]H. A. Dwyer and M. W. J., Oscillating flow over a cylinder at large Reynolds number, Journal of Fluid Mechanics., vol. 61, pp. 753-767, 1973.
[33]H. Higuchi, Kim, H. J. and Farell, C., On flow separation and reattachment around a circular cylinder atcritical Reynolds numbers. Journal of Fluid Mechanics., vol. 1989, pp. 149-171, 1989.
[34]Y. Zhou, and Wong, W., Fluctating Temperature Measurements on a Cylinder in Cross-Flow Using Fiber-Optic Bragg Grating Sensor, Lisbon, 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2001.
[35]杜榮國, MEMS 熱膜感測器設計製造及應用於探討非定常流動分離現象, 國立成功大學航空太空研究所碩士論文, 2003.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top