跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/11 04:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳翔和
研究生(外文):Hsiang-HoChen
論文名稱:利用不同焙燒程度棕櫚空果串進行水氣氣化反應之研究
論文名稱(外文):The study of steam gasification with different degrees of torrefied empty fruit bunches
指導教授:李約亨
指導教授(外文):Yueh-Heng Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:104
語文別:英文
論文頁數:62
中文關鍵詞:生質能氫氣水氣氣化焙燒
外文關鍵詞:BiomassHydrogenSteam gasificationTorrefaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
氣化是一種可以從生質料中獲得合成氣的方法,合成氣內以氫氣和一氧化碳為主要的可燃氣體。其中,以水氣氣化所獲得的合成氣含有最高比例的氫氣。本論文以最大化氫氣/一氧化碳體積比為目標,利用田口法設計實驗。實驗所用生質料為棕櫚空果串,並在氣化前進行焙燒。用以最大化氫氣/一氧化碳比的變因有四:焙燒溫度、水氣流率、氮氣流率和氣化溫度。實驗結果為較低的氣化溫度可加大合成氣中的氫氣/一氧化碳比,且氣化溫度對於氫氣/一氧化碳比的影響大於其餘三個變因。論文中也探討了各變因對於氣化過程中化學反應的影響,也對氣化過程進行經濟分析。
Steam gasification is capable of producing syngas with higher hydrogen molar fraction than air or oxygen gasification. This paper optimizes steam gasification process for palm empty fruit bunch (EFB) using Taguchi method. The gasification experiment is carried out in a small, self-built batch type fixed bed gasifier. H2/CO ratio is selected as quality standards. L9 orthogonal array is used with four parameters: gasification temperature, torrefaction temperature, steam flow rate and carrier gas (nitrogen) flow rate. Lower temperature of gasification is found to increase the H2/CO ratio in syngas considerably, and its effect significantly outweighs other factors. The difference of reaction in gasifier between different levels of control factors is investigated. Economical assessments were also performed.
Chapter 1. Introduction 7
1.1 Biomass as an energy source 7
1.2 Fuels from biomass 8
1.2.1 Torrefaction 9
1.2.2 Gasification 10
1.3 Palm empty fruit bunch (EFB) as biomass 13
1.4 Clean Hydrogen 17
Chapter 2. Methodology 26
2.1 Thermogravimetric analysis (TGA) 26
2.2 Taguchi method 26
2.3 Gasifier 29
2.4 Experimental procedure 29
2.4.1 TGA operation 30
2.4.2 Gasification and gas analysis 31
Chapter 3. Results and discussion 34
3.1 Thermogravimetric analysis (TGA) results 34
3.2 Torrefied biomass analysis 36
3.3 Taguchi method on gasification 37
3.3.1 Maximize H2/CO ratio 37
3.3.2 Transient analysis, the effect of each control factors 41
3.4 Cost analysis 54
Chapter 4. Conclusion 57
Chapter 5. Future works 59
Reference 60
1.Puigjaner, L., M. Pérez-Fortes, and J. Laínez-Aguirre, Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach. Energies, 2015. 8(6): p. 5613-5660.
2.Nunes, L.J.R., J.C.O. Matias, and J.P.S. Catalão, A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renewable and Sustainable Energy Reviews, 2014. 40: p. 153-160.
3.Balat, H. and E. Kırtay, Hydrogen from biomass – Present scenario and future prospects. International Journal of Hydrogen Energy, 2010. 35(14): p. 7416-7426.
4.Bergman, P.C.A., et al., Torrefaction for entrained-flow gasification of biomass 2005, ECN.
5.Boardman, R.D., et al., Logistics, Costs, and GHG Impacts of Utility Scale Cofiring with 20% Biomass. 2014. p. Medium: ED; Size: PDFN.
6.Basu, P., Chapter 7 - Gasification Theory, in Biomass Gasification, Pyrolysis and Torrefaction (Second Edition). 2013, Academic Press: Boston. p. 199-248.
7.de Lasa, H., et al., Catalytic Steam Gasification of Biomass: Catalysts, Thermodynamics and Kinetics. Chemical Reviews, 2011. 111(9): p. 5404-5433.
8.Schmidt, M., Oil palm plantation on the slopes of Mt. Cameroon. 2007: Wikipedia.
9.Bongoman, Elaeis guineensis fruits on tree. 2008: Wikipedia.
10.Chang, S.H., An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass and Bioenergy, 2014. 62: p. 174-181.
11.Piarpuzán, D., J.A. Quintero, and C.A. Cardona, Empty fruit bunches from oil palm as a potential raw material for fuel ethanol production. Biomass and Bioenergy, 2011. 35(3): p. 1130-1137.
12.Parthasarathy, P. and K.S. Narayanan, Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review. Renewable Energy, 2014. 66: p. 570-579.
13.Yang, W., et al., Performance analysis of a fixed-bed biomass gasifier using high-temperature air. Fuel Processing Technology, 2006. 87(3): p. 235-245.
14.Mohammed, M.A.A., et al., Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor. Energy Conversion and Management, 2011. 52(2): p. 1555-1561.
15.Sattar, A., et al., Steam gasification of rapeseed, wood, sewage sludge and miscanthus biochars for the production of a hydrogen-rich syngas. Biomass and Bioenergy, 2014. 69: p. 276-286.
16.Yan, F., et al., Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: Influence of temperature and steam on hydrogen yield and syngas composition. Bioresource Technology, 2010. 101(14): p. 5633-5637.
17.Kaewpanha, M., et al., Steam co-gasification of brown seaweed and land-based biomass. Fuel Processing Technology, 2014. 120: p. 106-112.
18.Nipattummakul, N., et al., Hydrogen and syngas yield from residual branches of oil palm tree using steam gasification. International Journal of Hydrogen Energy, 2011. 36(6): p. 3835-3843.
19.Wu, C. and P.T. Williams, Hydrogen Production from the Pyrolysis−Gasification of Polypropylene: Influence of Steam Flow Rate, Carrier Gas Flow Rate and Gasification Temperature. Energy & Fuels, 2009. 23(10): p. 5055-5061.
20.Sharma, S. and B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts—A review. Journal of Power Sources, 2012. 208: p. 96-119.
21.Pan, C., et al., Integration of high temperature PEM fuel cells with a methanol reformer. Journal of Power Sources, 2005. 145(2): p. 392-398.
22.Moon, J., et al., Transient behavior of devolatilization and char reaction during steam gasification of biomass. Bioresource Technology, 2013. 133: p. 429-436.
23.Lettner, F., H. Timmerer, and P. Haselbacher, Guideline for safe and eco-friendly biomass gasification. 2007, Intelligent Energy - Europe.
24.Cassel, B. and K. Menard, Proximate Analysis of Coal and Coke using the STA 8000 Simultaneous Thermal Analyzer. 2012, PerkinElmer.
25.Basu, P., Chapter 4 - Torrefaction, in Biomass Gasification, Pyrolysis and Torrefaction (Second Edition). 2013, Academic Press: Boston. p. 87-145.
26.Gøbel, B., et al., The development of a computer model for a fixed bed gasifier and its use for optimization and control. Bioresource Technology, 2007. 98(10): p. 2043-2052.
27.Chen, C.-J., C.-I. Hung, and W.-H. Chen, Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier. Applied Energy, 2012. 100: p. 218-228.
28.Inayat, A., et al., Biomass Steam Gasification with In-Situ CO2 Capture for Enriched Hydrogen Gas Production: A Reaction Kinetics Modelling Approach. Energies, 2010. 3(8): p. 1472.
29.Wang, J., et al., Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane. Fuel, 2009. 88(9): p. 1572-1579.
30.Ferrari, A., et al., Microwave-Specific Effects on the Equilibrium Constants and Thermodynamics of the Steam–Carbon and Related Reactions. The Journal of Physical Chemistry C, 2014. 118(18): p. 9346-9356.
31.Callaghan, C.A., Kinetics and catalysis of the water-gas-shift reaction: A microkinetic and graph theoretic approach. 2006, Naval Undersea Warfare Center.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊