(3.227.0.150) 您好!臺灣時間:2021/05/06 12:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李冠毅
研究生(外文):Kuan-YiLee
論文名稱:Landsat 8衛星影像支持向量機雲偵測演算法
論文名稱(外文):Cloud Detection Based on Support Vector Machine for Landsat 8 Imagery
指導教授:林昭宏林昭宏引用關係
指導教授(外文):Chao-Hung Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:測量及空間資訊學系
學門:工程學門
學類:測量工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:51
中文關鍵詞:雲偵測分類支持向量機
外文關鍵詞:Cloud DetectionClassificationSupport Vector Machine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:89
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光學遙感探測衛星影像中普遍有雲覆蓋地表的問題,此問題限制了影像的使用且增加處理影像與資料分析的難度,許多衛星影像相關研究,如影像拼接、大氣效應校正、植生指標分析、地表物分類和地表變遷分析皆需了解雲的位置後再做後續之處理,因此,雲偵測法為許多研究前處理的過程之一。在先前研究中,門檻值法是最普遍與最有計算及執行效率的方法,然而,其設定的門檻值通常只適用於該研究地區或某特定環境,地球環境則會因為時間不同而不斷推移變化,如果在不同時間與地點所拍攝的影像卻使用同一組門檻值,勢必會有錯誤偵測的情況發生。此外,門檻值演算法也會因為環境改變而出現例外的情況,而例外情況的漸增會使得演算法的實用性遞減。因此本研究捨棄了門檻值的使用,利用支持向量機輔助雲偵測演算法可避免使用門檻值演算法所出現之相關問題,且本研究以統計模式建立分類基準來避免相對主觀的門檻值。
本研究之關鍵在於支持向量機演算法中所使用的分類特徵。Landsat 7之自動雲偵測演算法(ACCA)依照不同目標物的物理特性來區分雲和其他物體;同理,另一演算法Fmask也使用各種門檻值和機制找出(來區分)雲、雲陰影、雪和水體等等;本研究則綜合兩者之機制產生用於支持向量機之特徵。另外,影像分類的過程中,空間和紋理資訊皆應被利用,因此,本研究紋理特徵部分使用Hotelling transform再經過共生矩陣產生之紋理影像,我們的目標是將影像分類為四大類:雲、雪、水及其他。實驗過程中使用的影像為Landsat 8之影像,其感測器包含作業地表成像儀(OLI)和熱紅外感測器(TIRS),實驗地區則含蓋農地、雪地和海島,實驗結果顯示本研究所提出之方法其整體精度介於93%至97%且高於其他相關研究。

Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation indices, land cover classification, and land cover change detection. Therefore, the generation of cloud mask is one of important pre-processing steps in many remote-sensing researches. In previous studies, thresholding is a common and efficient method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there many exceptions have to control, and the Earth environment and atmosphere changed dynamically. Using a set of threshold values on various image data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study.
The features used in a classifier is the key to a successful classification. In the popular thresholding-based approach, called Automatic Cloud Cover Assessment (ACCA), the cloud is distinguish from other objects based on the physical characteristics of cloud and other targets on the ground. Similarly, the algorithm called Fmask adopted a lot of thresholds and criteria to screen clouds, water, and snow. Following these two algorithms, the spectral features used in the proposed method is defined by the ACCA and Fmask algorithms. Spatial information is also important in the classification processing in addition to the spectral information. Consequently, co-occurrence matrix of the Hotelling transform is used in proposed method to extract the spatial or called texture features. In this study, images are partitioned into four groups: cloud, snow, water and the others. In experiments, images acquired by the Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the overall detection accuracy of the proposed method is about 93% to 97%, which is better than thresholding-based methods with the default threshold values and is comparable to that with the tuned threshold values.

摘要 I
Abstract III
致謝 V
CATALOG VI
List of Table VII
List of Figure VII
Chapter 1 Introduction 1
Chapter 2 Background 7
2.1 Review of Landsat 7 automatic cloud cover assessment 7
2.2 Review of Fmask algorithm 10
Chapter 3 Methodology 11
3.1 SVM classification 12
3.2 Spectral features 14
3.3 Texture features 26
Chapter 4 Experiment Results and Discussions 29
4.1 Study data 29
4.2 Experimental Results 31
4.3 Evaluation 38
Chapter 5 Conclusions and Future works 45
References 48
Ackerman, S.A., Strabala, K.I., Menzel, W.P., Frey, R.A., Moeller, C.C., & Gumley, L.E. (1998). Discriminating clear sky from clouds with MODIS. Journal of Geophysical Research D: Atmospheres, 103 (D24), 32141–32157.
Braaten, J. D., Cohen, W. B., & Yang, Z. (2015). Automated cloud and cloud shadow identification in Landsat MSS imagery for temperate ecosystems.Remote Sensing of Environment, 169, 128-138.
Choi, H., & Bindschadler, R. (2004). Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index threshold value decision. Remote Sensing of Environment, 91, 237–242.
Du, Y., Teillet, P. M., & Cihlar, J. (2002). Radiometric Normalization of Multitemporal High-Resolution Satellite with Quality Control for Lnad Cover Change Detection. Remote Sensing of Environment, 82, 123-134.
Chen, Y. W., & Lin, C. J. (2006). Combining SVMs with various feature selection strategies. In Feature extraction (pp. 315-324). Springer Berlin Heidelberg.
Chen, Gang. Support vector machines for cloud detection over ice-snow areas. Geo-spatial Information Science 10.2 (2007): 117-120.
Canty, M. J., Nielsen, A. A. & Schmidt, M. (2008). Automatic radiometric normalization of multitemporal satellite imagery. Remote Sensing of Environment, 91, 441−451.
Chethan, H. K., Kumar, G. H., & Raghavendra, R. (2009, October). Texture based approach for cloud classification using SVM. In Advances in Recent Technologies in Communication and Computing, 2009. ARTCom'09. International Conference on (pp. 688-690). IEEE.
Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.
Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing. Nueva Jersey.
Hagolle, O., Huc, M., Pascual, D. V., & Dedieu, G. (2010). A Multi-Temporal Method for Cloud Detection, Applied to Formosat-2, Venµs, Landsat and Sentinel-2 Images. Remote Sensing of Environment, 114, 1747-55.
Irish, R. (2000). Landsat-7 Automatic Cloud Cover Assessment Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery. The International Society for Optical Engineering, 4049, 348–355.
Hégarat-Mascle, S., & André, C. (2009). Use of Markov Random Fields for Automatic Cloud/Shadow Detection on High Resolution Optical Images. ISPRS Journal of Photogrammetry and Remote Sensing, 64, 351-66.
Hughes, M. J., & Hayes, D. J. (2014). Automated detection of cloud and cloud shadow in single-date Landsat imagery using neural networks and spatial post-processing. Remote Sensing, 6(6), 4907-4926.
Irish, R. R., Barker, J. L., Goward, S. N., & Arvidson, T. (2006). Characterization of the Landsat-7 ETM+ automated cloud-cover assessment (ACCA) algorithm.Photogrammetric Engineering & Remote Sensing, 72(10), 1179-1188.
Jin, S., Homer, C., Yang, L., Xian, G., Fry, J., Danielson, P., & Townsend, P. A. (2013). Automated Cloud and Shadow Detection and Filling Using Two-Date Landsat Imagery in the USA. International Journal of Remote Sensing, 34, 1540-60.
Luo, Y., Trishchenko, A. P., & Khlopenkov, K. V. (2008). Developing clear-sky, cloud and cloud shadow mask for producing clear-sky composites at 250-meter spatial resolution for the seven MODIS land bands over Canada and North America. Remote Sensing of Environment, 112(12), 4167-4185.
Li, Dacheng, & Tang, Ping. (2013). A Sensor Specified Method Based on Spectral Transformation for Masking Cloud in Landsat Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(3), 1619-27.
Lin, Chao-Hung, Lin, Bo-Yi, Lee, Kuan-Yi, and Chen, Yi-Chen (2015). Radiometric Normalization and Cloud Detection of Optical Satellite Images Using Invariant Pixels. ISPRS Journal of Photogrammetry and Remote Sensing, 106, 107-117.
Li, P., Dong, L., Xiao, H., & Xu, M. (2015). A cloud image detection method based on SVM vector machine. Neurocomputing, 169, 34-42.
Mudrova, M., & Prochazka, A. (2005). Principal component analysis in image processing. In Proceedings of the MATLAB Technical Computing Conference, Prague.
Mallet, C., Bretar, F., Roux, M., Soergel, U., Heipke, C., 2011. Relevance assessment of full-waveform lidar data for urban area classification. ISPRS Journal of Photogrammetry and Remote Sensing 66 (6), S71-S84.
Man, D. C., Luu, V. H., Bui, Q. H., & Nguyen, T. N. T. (2015). Cloud Detection Algorithm for LandSat 8 Image Using Multispectral Rules and Spatial Variability. In Knowledge and Systems Engineering (pp. 247-259). Springer International Publishing.
Oreopoulos, L., Wilson, M., & Várnai, T. (2011). Implementation on Landsat data of a simple cloud mask algorithm developed for MODIS land bands. IEEE Transactions on Geoscience and Remote Sensing, 8(4), 597–601.
Rossi, R., Basili, R., Del Frate, F., Luciani, M., & Mesiano, F. (2011, July). Techniques based on support vector machines for cloud detection on quickbird satellite imagery. In Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International (pp. 515-518). IEEE.
Sedano, F., Kempeneers, P., Strobl, P., Kucera, J., Vogt, P., Seebach, L., & San-Miguel-Ayanz, J. (2011). A Cloud Mask Methodology for High Resolution Remote Sensing Data Combining Information from High and Medium Resolution Optical Sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 66(5), 588-96.
Scaramuzza, P. L., Bouchard, M. A., & Dwyer, J. L. (2012). Development of the Landsat data continuity mission cloud-cover assessment algorithms. IEEE Transactions on Geoscience and Remote Sensing, 50(4), 1140-1154.
Soliman, O. S., & Mahmoud, A. S. (2012, May). A classification system for remote sensing satellite images using support vector machine with non-linear kernel functions. In Informatics and Systems (INFOS), 2012 8th International Conference on (pp. BIO-181). IEEE.
Taravat, A., Del Frate, F., Cornaro, C., & Vergari, S. (2015). Neural networks and support vector machine algorithms for automatic cloud classification of whole-sky ground-based images. IEEE Geoscience and remote sensing letters,12(3), 666-670.
Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 118, 83–94.
Zhu, Z., & Woodcock, C. E. (2014). Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change. Remote Sensing of Environment, 152, 217-234.
Zhang, Q., & Xiao, C. (2014). Cloud detection of RGB color aerial photographs by progressive refinement scheme. IEEE Transactions on Geoscience and Remote Sensing, 52(11), 7264-7275.
Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sensing of Environment, 159, 269-277.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔