(3.236.122.9) 您好!臺灣時間:2021/05/09 07:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周彣翰
研究生(外文):Wen-HanChou
論文名稱:神經元之量子傳輸—以視覺神經元為例
論文名稱(外文):Quantum Transmissions in Neurons—Take Visual Neurons as an Example
指導教授:黃宗立黃宗立引用關係周文己周文己引用關係
指導教授(外文):Tzone-Lih HwangWen-Chi Chou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:26
中文關鍵詞:量子力學量子腦動力學神經元神經傳導物質
外文關鍵詞:Quantum mechanicsQuantum brain dynamicsNeuronsNeurotransmitters
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著人類的發展,科技日新月異,量子力學的發展日益蓬勃,傳統的研究方法已不再適用。在極微小的尺度中,我們所熟知的古典力學已不能適用,所以我們必須使用量子力學的角度去解釋它。
現今量子力學的研究領域涵蓋廣泛,包括量子光學、量子資訊、量子計算等等,然而一個新穎的議題正漸漸地蓬勃發展,量子腦動力學,以量子力學的角度去解釋大腦中是如何傳遞訊號。在傳統生理學上,大腦中的訊號,主要靠著神經元和神經傳導物質去傳遞,然而我們嘗試以量子力學的角度去詮釋,我們用極微小的尺度去觀測,大腦中的神經傳導物質是否會有量子效應發生,而神經元是如何處理這些量子,又如何將這些量子轉換成大腦訊號,這是我們了解大腦的另一個途徑。
在既不違反生理學的前提下,本論文將結合生理學與量子力學的技術,提出一種模型,讓我們能用量子力學的角度,去詮釋大腦是如何傳遞訊號。

With the progress of the time, science and technology change rapidly, especially in the booming development of the quantum mechanics. As a result, the traditional research could be improved if advanced technology or concepts are applied. In particular, in the microscale, classical mechanics which we know is no longer applicable. It can be explained much better in terms of quantum mechanics.
The present researches in the quantum mechanics have covered a wide range of research topics including quantum optics, quantum information, quantum computing, and so on. However, a new research topic, quantum brain dynamics, is booming which explains how signal transmitted in the brain in terms of quantum mechanics. In traditional physiology, signal in the brain is mainly transmitted by neurons and neurotransmitters. However, this thesis tries to explain the transmission in terms of quantum mechanics and conjecture how the quantum effect has happened to these neurotransmitters in the brain in the microscale; how the neurons process these quantum qubits and how the neurons transform these quantum qubits to electric signal.
Without violating physiology theory, this thesis presents a possible model which combines physiology and quantum mechanics technology.

中文摘要 I
Abstract II
致謝 IV
Content V
List of Figures VII
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Motivation and Contribution 1
1.3 Thesis Structure 2
Chapter 2 Preliminaries 3
2.1 Physiological theory 3
2.1.1 Nervous system 3
2.1.2 Visual Pathway 5
2.2 Quantum Theory and Technology 6
2.2.1 The Introduction of Quantum Bit 6
2.2.2 The Quantum Unitary Operations 8
2.2.3 The Properties of Entangled States 9
2.2.4 The Properties of Entanglement Swapping 10
2.2.5 Dense Coding and Super Dense Coding 11
2.2.6 Quantum Teleportation 12
Chapter 3 Quantum Hypothesis 13
3.1 Katz’s Quantum Hypothesis 13
3.2 Fisher’s Quantum Hypothesis 14
3.3 Proposed Quantum Hypothesis 15
3.3.1 Proposed Hypothesis 15
3.3.2 Extended Hypothesis 16
Chapter 4 Proposed Quantum Hypothesis applied to the visual pathway 20
4.1 Model 20
Chapter 5 Conclusions 25
Bibliography 26

1.Jibu, M. and K. Yasue, Quantum brain dynamics and consciousness: an introduction. Vol. 3. 1995: John Benjamins Publishing.
2.Jibu, M. and K. Yasue, The basics of quantum brain dynamics. Rethinking neural networks: Quantum fields and biological data, 1993: p. 121.
3.Katz, B., On the quantal mechanism of neural transmitter release. Nobel Lectures Physiology or Medicine 1963–1970. 1972, Elsevier Publishing Company, Amsterdam.
4.Fisher, M.P., Quantum cognition: The possibility of processing with nuclear spins in the brain. Annals of Physics, 2015. 362: p. 593-602.
5.Kandel, E.R. and L.R. Squire, Neuroscience. Annals of the New York Academy of Sciences, 2001. 935(1): p. 118-135.
6.Stirling, J., et al., Neurocognitive function and outcome in first-episode schizophrenia: a 10-year follow-up of an epidemiological cohort. Schizophrenia research, 2003. 65(2): p. 75-86.
7.Byrnes, J.P., Minds, brains, and learning: Understanding the psychological and educational relevance of neuroscientific research. 2001: Guilford Press.
8.Molleman, A., Patch clamping: an introductory guide to patch clamp electrophysiology. 2003: John Wiley & Sons.
9.Luo, C.-h. and Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circulation research, 1991. 68(6): p. 1501-1526.
10.Zukowski, M., et al., Event-ready-detectors Bell experiment via entanglement swapping. Physical Review Letters, 1993. 71(26): p. 4287-4290.
11.Pan, J.-W., et al., Experimental entanglement swapping: Entangling photons that never interacted. Physical Review Letters, 1998. 80(18): p. 3891.
12.Hegazy, O.M., A.M. Bahaa-Eldin, and Y.H. Dakroury, Quantum Secure Direct Communication using Entanglement and Super Dense Coding. arXiv preprint arXiv:1402.6219, 2014.
13.Bennett, C.H., et al., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical review letters, 1993. 70(13): p. 1895.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔