(3.92.96.236) 您好!臺灣時間:2021/05/07 15:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡尚倫
研究生(外文):Shang-LunTsai
論文名稱:基於量子隱傳的仲裁式量子簽章與其應用
論文名稱(外文):Arbitrated Quantum Signature Based On Quantum Teleportation And Its Applications
指導教授:黃宗立黃宗立引用關係
指導教授(外文):Tzonelih Hwang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:64
中文關鍵詞:量子密碼學量子隱傳仲裁式量子簽章仲裁式量子盲簽章仲裁式代理盲簽章量子匿名投票系統
外文關鍵詞:Quantum cryptographyQuantum teleportationArbitrated quantum signatureArbitrated quantum blind signatureArbitrated quantum proxy blind signatureArbitrated quantum anonymous voting system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
簽章在生活上被廣泛的應用,例如,電子付款、電子跨行交易、電子拍賣、電子投票等。現今的簽章是以非對稱式金鑰系統為設計基礎,其安全性建立在計算上的複雜度,例如離散對數問題與質因數分解問題。然而在1994年,Peter Shor設計了一種量子演算法,能在線性時間內解決質因數分解問題。因此,在量子電腦的威脅下,現今的非對稱式金鑰系統將不再安全。
量子密碼學利用量子力學的基本特性,例如,海森堡測不準原理、不可複製性,來提供無條件安全的通訊環境,並在近年來被廣泛的用來設計簽章協定與其應用,例如:量子盲簽章、量子代理簽章、量子代理盲簽章、以及量子匿名投票系統等等。然而,現有的量子簽章協定與其應用仍存有一些安全性上的議題。
本篇論文分別對現存的量子盲簽章、量子代理盲簽章、量子匿名投票系統指出其潛在的安全性議題。為解決這些議題,本篇論文提出兩個基於量子隱傳的仲裁式量子簽章協定,並以此協定為基礎,分別提出了仲裁式量子盲簽章、仲裁式量子代理盲簽章、以及仲裁式量子匿名投票系統。

Signature has a variety of applications in our daily life, for instance, e-payment, inter-bank e-transaction, e-auction, and e-voting. Digital signature protocols nowadays are designed based on asymmetric-key system, whose security is based on the complexity of mathematical calculations, such as discrete logarithm and prime factorization. However in 1994, Peter Shor designed a quantum algorithm to resolve the prime factorization problem in polynomial time. Therefore, under the threat of quantum computer, the asymmetric-key system nowadays is not secure anymore.
Based on the laws of fundamental quantum-mechanism, such as the Heisenberg uncertainty principle and the quantum no-cloning theorem, quantum cryptography provides unconditional security for communication. Recently, quantum cryptography has been widely used to design signature protocols and their applications, such as quantum blind signature, quantum proxy signature, quantum proxy blind signature, quantum anonymous voting system, etc. However, existing quantum signature schemes and their applications still have some security issues.
This thesis points out the potential security issues in existing quantum blind signature schemes, quantum proxy blind signature schemes, and quantum anonymous voting systems individually. In order to resolve these issues, this thesis proposes two arbitrated quantum signature based on quantum teleportation and further proposes an arbitrated quantum blind signature, an arbitrated quantum proxy blind signature, and an arbitrated quantum anonymous voting system based on the proposed schemes respectively.

中文摘要 i
Abstract ii
致謝 iv
Content v
List of Tables viii
List of Figures ix
Chapter 1 Introduction 1
1.1 Overview 1
1.2 Motivation and Contribution 2
1.3 Thesis Structure 5
Chapter 2 Preliminaries 6
2.1 Quantum Theory 6
2.2 Quantum unitary operations 8
2.3 The Einstein-Podolsky-Rosen (EPR) pairs 9
2.4 Quantum teleportation 10
Chapter 3 Proposed arbitrated quantum signature 12
3.1 Environment 12
3.2 The underlying fundamentals 13
3.2.1 Cryptography hash function 13
3.2.2 Encoding function 13
3.2.3 Quantum message generation for EPR pairs 14
3.2.4 Quantum message generation for single photons 14
3.2.5 Measurement of single photons 15
3.2.6 Signing function 15
3.2.7 Quantum teleportation and AQS 16
3.3 Proposed AQS 17
3.3.1 Proposed two-step AQS 17
3.3.2 Proposed three-step AQS 19
3.4 Security analysis 21
3.4.1 Un-forgeability 22
3.4.2 Un-deniability 22
3.5 Comparison 23
Chapter 4 Arbitrated quantum blind signature 25
4.1 Environment 25
4.2 Proposed AQBS 26
4.3 Security analysis 28
4.3.1 Un-forgeability 29
4.3.2 Un-deniability 30
4.3.3 Un-linkability 30
4.3.4 Blindness 31
4.3.5 Modification attack 31
4.4 Comparisons 31
Chapter 5 Arbitrated quantum proxy blind signature 33
5.1 Environment 33
5.2 Proposed AQPBS 34
5.3 Security analysis 39
5.3.1 Un-forgeability 39
5.3.2 Un-deniability 39
5.3.3 Un-linkability 39
5.3.4 Blindness 39
5.3.5 Distinguishability 40
5.4 Comparisons 40
Chapter 6 Arbitrated quantum anonymous voting system 42
6.1 Environment 42
6.2 Proposed AQBS 44
6.3 Security analysis 54
6.3.1 Security of Ri1, Ri2, and KVi 54
6.3.2 Privacy 55
6.3.3 Integrity 55
6.3.4 Anonymity 56
6.3.5 Eligibility 57
6.3.6 Non-reusability 57
6.3.7 Completeness 57
6.4 Comparisons 58
Chapter 7 Conclusion and Future studies 59
Bibliography 60
1.Shor, P.W., Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review, 1999. 41(2): p. 303-332.
2.Wen, X., X. Niu, L. Ji and Y. Tian, A weak blind signature scheme based on quantum cryptography. Optics Communications, 2009. 282(4): p. 666-669.
3.Zuo, H., Cryptanalysis of quantum blind signature scheme. International Journal of Theoretical Physics, 2013. 52(1): p. 322-329.
4.Li-Bao, H., H. Liu-Sheng, Y. Wei and X. Rui, Cryptanalysis of fair quantum blind signatures. Chinese Physics B, 2012. 21(3): p. 030306.
5.Qi, S., H. Zheng, W. Qiaoyan and L. Wenmin, Quantum blind signature based on two-state vector formalism. Optics Communications, 2010. 283(21): p. 4408-4410.
6.Su, Q. and W.-M. Li, Cryptanalysis of enhancement on “quantum blind signature based on two-state vector formalism. Quantum information processing, 2014. 13(5): p. 1245-1254.
7.Wang, M., X. Chen and Y. Yang, A blind quantum signature protocol using the GHZ states. Science China Physics, Mechanics and Astronomy, 2013. 56(9): p. 1636-1641.
8.Yang, C.-W., T. Hwang and Y.-P. Luo, Enhancement on “quantum blind signature based on two-state vector formalism. Quantum information processing, 2013. 12(1): p. 109-117.
9.Yin, X.-R., W.-P. Ma and W.-Y. Liu, A blind quantum signature scheme with χ-type entangled states. International Journal of Theoretical Physics, 2012. 51(2): p. 455-461.
10.Shi, W.-M., J.-B. Zhang, Y.-H. Zhou and Y.-G. Yang, A new quantum blind signature with unlinkability. Quantum Information Processing, 2015. 14(8): p. 3019-3030.
11.Shi, J., R. Shi, Y. Guo, X. Peng and Y. Tang, Batch proxy quantum blind signature scheme. Science China Information Sciences, 2013. 56(5): p. 1-9.
12.Cai, X.-Q., Y.-H. Zheng and R.-L. Zhang, Cryptanalysis of a batch proxy quantum blind signature scheme. International Journal of Theoretical Physics, 2014. 53(9): p. 3109-3115.
13.Wen, X., Y. Chen and J. Fang, An inter-bank E-payment protocol based on quantum proxy blind signature. Quantum information processing, 2013. 12(1): p. 549-558.
14.Cai, X.-Q. and C.-Y. Wei, Cryptanalysis of an inter-bank E-payment protocol based on quantum proxy blind signature. Quantum Information Processing, 2013. 12(4): p. 1651-1657.
15.Cao, H.-J., Y.-Y. Zhu and P.-F. Li, A quantum proxy weak blind signature scheme. International Journal of Theoretical Physics, 2014. 53(2): p. 419-425.
16.Zhang, K.-J. and H.-Y. Jia, Cryptanalysis of a quantum proxy weak blind signature scheme. International Journal of Theoretical Physics, 2015. 54(2): p. 582-588.
17.Hillery, M., M. Ziman, V. Bužek and M. Bieliková, Towards quantum-based privacy and voting. Physics Letters A, 2006. 349(1): p. 75-81.
18.Li, Y. and G. Zeng, Multi-object quantum traveling ballot scheme. Chinese Optics Letters, 2009. 7(2): p. 152-155.
19.Bonanome, M., V. Bužek, M. Hillery and M. Ziman, Toward protocols for quantum-ensured privacy and secure voting. Physical Review A, 2011. 84(2): p. 022331.
20.Horoshko, D. and S. Kilin, Quantum anonymous voting with anonymity check. Physics Letters A, 2011. 375(8): p. 1172-1175.
21.Li, Y. and G. Zeng, Anonymous quantum network voting scheme. Optical review, 2012. 19(3): p. 121-124.
22.Rui-Rui, Z. and Y. Li, Quantum election scheme based on anonymous quantum key distribution. Chinese Physics B, 2012. 21(8): p. 080301.
23.Cao, H.-J., L.-Y. Ding, Y.-F. Yu and P.-F. Li, A Electronic Voting Scheme Achieved by Using Quantum Proxy Signature. International Journal of Theoretical Physics, 2016: p. 1-8.
24.Guo, Y., Y. Feng and G. Zeng, Quantum anonymous voting with unweighted continuous-variable graph states. Quantum Information Processing, 2016. 15(8): p. 3327-3345.
25.Hwang, T., S.-K. Chong, Y.-P. Luo and T.-X. Wei, New arbitrated quantum signature of classical messages against collective amplitude damping noise. Optics communications, 2011. 284(12): p. 3144-3148.
26.Luo, Y.-P. and T. Hwang, Arbitrated quantum signature of classical messages without using authenticated classical channels. Quantum information processing, 2014. 13(1): p. 113-120.
27.Wootters, W.K. and W.H. Zurek, A single quantum cannot be cloned. Nature, 1982. 299(5886): p. 802-803.
28.Bennett, C.H., G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical review letters, 1993. 70(13): p. 1895.
29.Rogaway, P. and T. Shrimpton, Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Collision Resistance, in Fast Software Encryption: 11th International Workshop, FSE 2004, Delhi, India, February 5-7, 2004. Revised Papers, B. Roy and W. Meier, Editors. 2004, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 371-388.
30.Dang, Q., Changes in Federal Information Processing Standard (FIPS) 180-4, Secure Hash Standard. Cryptologia, 2013. 37(1): p. 69-73.
31.Thomsen, S.S. and L.R. Knudsen, Cryptographic hash functions. 2005, Technical University of DenmarkDanmarks Tekniske Universitet, Department of Applied Mathematics and Computer ScienceInstitut for Matematik og Computer Science.
32.Bennett, C.H. and G. Brassard, Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 2014. 560: p. 7-11.
33.Jackson, D.J. and G.M. Hockney, Securing QKD links in the full Hilbert space. Quantum Information Processing, 2005. 4(1): p. 35-47.
34.El Allati, A., M. El Baz and Y. Hassouni, Quantum key distribution via tripartite coherent states. Quantum Information Processing, 2011. 10(5): p. 589-602.
35.Liu, B., F. Gao and Q.Y. Wen, Single-Photon Multiparty Quantum Cryptographic Protocols with Collective Detection. Ieee Journal of Quantum Electronics, 2011. 47(11): p. 1383-1390.
36.Nielsen, M.A. and I.L. Chuang, Quantum computation and quantum information. 2010: Cambridge university press.
37.Lin, J., H.-Y. Tseng and T. Hwang, Intercept–resend attacks on Chen et al.'s quantum private comparison protocol and the improvements. Optics Communications, 2011. 284(9): p. 2412-2414.
38.Lin, J. and T. Hwang, An enhancement on Shi et al.'s multiparty quantum secret sharing protocol. Optics Communications, 2011. 284(5): p. 1468-1471.
39.Tseng, H., T. Hwang and C.-Y. Lin, On the Deterministic Secure Quantum Communication using Four-Particle Entangled State and Entanglement Swapping. J. Inf. Sci. Eng., 2012. 28(3): p. 471-478.
40.Hwang, T. and Y.-P. Luo, Probabilistic authenticated quantum dialogue. Quantum Information Processing, 2015. 14(12): p. 4631-4650.
41.Li, F.-G. and J.-H. Shi, An arbitrated quantum signature protocol based on the chained CNOT operations encryption. Quantum Information Processing, 2015. 14(6): p. 2171-2181.
42.Yang, Y.-G., H. Lei, Z.-C. Liu, Y.-H. Zhou and W.-M. Shi, Arbitrated quantum signature scheme based on cluster states. Quantum Information Processing, 2016. 15(6): p. 2487-2497.
43.Yu, C.H., G.D. Guo and S. Lin, Quantum Secure Direct Communication with Authentication Using Two Nonorthogonal States. International Journal of Theoretical Physics, 2013. 52(6): p. 1937-1945.
44.Yadav, P., R. Srikanth and A. Pathak, Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Information Processing, 2014. 13(12): p. 2731-2743.
45.Cui, Y.Q. and J.G. Gao, Bidirectional Quantum Secure Direct Communication in Trapped Ion Systems. International Journal of Theoretical Physics, 2016. 55(3): p. 1706-1709.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔