( 您好!臺灣時間:2024/07/14 22:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Solute transport modeling using non-parametric geostatistical method
指導教授(外文):Kuo-Chin Hsu
外文關鍵詞:GeostatisticsSolute transportHeterogeneityIndicator kriging
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Hydrogeology field investigation is the preliminary work for modeling the transmission of contaminant and analyzing the attribution of responsibility. Reconstruction of the heterogeneous field can help to clarify the movement of contaminant in groundwater. Previous studies indicate that in situ hydrogeology may show highly heterogeneous and the behavior of solute transport is much different from that of homogeneous field. Due to hydraulic test and laboratory experiments are expensive and time consuming, samples of hydraulic conductivity are sparse to describe the heterogeneous field. This study uses lithifacies, which is abundant and is indirectly related to the property of hydraulic conductivity. Indicator kriging, a non-parametric geostastical method, is used to interpolate the category data and build heterogeneous field for the solute transport modeling. The results indicate that if data is sufficient, indicator kriging with stratified sampling data is effectively reconstruct the high heterogeneous distribution of hydraulic conductivity. When the variance of hydraulic conductivity is close to 1, the indicator field produced by indicator kriging can well represent the results of flow and solute transport modeling in the true field. When variance comes to 5.21, indicator kriging still represent the result of flow modeling and the distribution of spatial variable, the result of solute transport modeling in indicator kriging field has some difference from the result in true field.
Abstract I
摘要 II
Contents IV
List of Tables VI
List of Figures VII
Notation X
Chapter 1 Introduction P.1
1.1 Flow Chart P.4
Chapter 2 Methodology P.6
2.1 Geostatistical Theory P.6
2.1.1 Integral scale P.8
2.2 Simulation P.9
2.2.1 Unconditional Simulation P.9
2.2.2 Conditional Simulation P.10
2.3 Sequential Gaussian Simulation (SGS) P.10
2.4 Kriging P.12
2.4.1 Simple Kriging (SK) P.13
2.4.2 Ordinary Kriging (OK) P.14
2.4.3 Indicator Kriging (IK) P.15
2.5 Stratified Sampling P.17
2.6 Solute Transport P.18
2.6.1 Advection P.18
2.6.2 Diffusion and Dispersion P.19
2.6.3 The Advection-Dispersion Equation (ADE) P.21
Chapter 3 True Field P.25
3.1 Flow Modeling P.29
3.2 Solute Transport Modeling P.32
Chapter 4 Solute Transport in Lithifacies Field P.34
4.1 Stratified Sampling from True Field P.34
4.2 Classification of Indicator Kriging P.37
4.2.1 IK Field 1: Lithifacies Classification P.39
4.2.2 IK Field 2: 2 Classification P.43
4.3 Flow Modeling P.46
4.4 Solute Transport Modeling P.53
Chapter 5 Results and Discussions P.57
Chapter 6 Conclusions and Suggestions P.63
6.1 Conclusions P.63
6.2 Suggestions P.64
Reference P.65

Bear, J., 1972. Dynamics of fluids in porous media. New York: Amr Elsev.
Boggs, J. M., and E. E. Adams. 1992. Field study of disoersion in a heterogeneous aquifer: 4. Investigation of absorption and sampling bias. Water Resources Research 28, no.12: 3325-3336.
Bedient, J., H. S. Rifai, and G. J. Newell. 1994. Ground Water Contaminant. Englewood Cliffs, New jersey: Prentice Hall.
Deutch, C. V., and A. G. Journel. 1998. GSLIB: Geostatistical Software Library and User’s Guide. New York: Oxford Univ.
Freeze, R. A., and J. A. Cherry, 1979. Groundwater. Englewood Cliffs, New jersey: Prentice Hall.
Fetter, C. W., 1994. Applied Hydrogeology. Macmillan College Publishing Company.
Gelhar, L.W. 1993. Stochastic Subsurface Hydrology. New Jersey: Prentice Hall.
Goovaerts, P. 1997. Geostatistics for Natural Resources Evaluation. New York: Oxford Univ.
Hufschmied, P. 1986. Estimation of three-dimensional statistically anisotropic hydraulic conductivity field by means of single well pumping tests combined with flowmeter measurements. Hydrogeology 2:163-174.
Haggerty, R., S. W. Fleming, L. C. Meigs, and S. A. McKenna. 2001. Tracer tests in a fractured dolomite: 2. Analysis of mass transfer in single-well injection-withdrawal tests. Water Resource Research 37. no.5: 1129-1142.
Jang, C. S., C. F. Chen, C. P. Liang, J. S. Chen. 2016, Combining groundwater quality analysis and a numerical flow simulation for spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain. Journal of Hydrology 553: 541-556.
Killey, R. W. D., and G. L. Moltyaner. 1988. Twin Lake Tracer Tests: Setting, Methodology, and Hydraulic Conductivity Distribution. Water Resources Research 24, no.10: 24, 1585-1612.
Kameshwara Rao, V. and A. C. Narayana. 2015. Application of nonlinear geostatistical indicator kriging in lithological categorization of an iron ore deposit. Current Science 108. no.3: 413-421.
Liu, C. W., C. S. Jang, C. M. Liao. 2004. Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan). Science of the Total Environment 321 no1-3: 173-188.
Loheide II, S. P., J. J. Butler Jr, S. M. Gorelick. 2005. Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: A saturated-unsaturated flow assessment. Water Resources Research 41. no.7
Liu, G., C. Zheng, and S. M. Gorelick. 2007. Evaluation of the applicability of the dual-domain mass transfer model in porous media containing connected high-conductivity channels. Water Resources Research 43 no.12.
Linde, N., T. Lochbu ̈hler, M. Dogan, R. L. Van Dam. 2015. Tomogram-based comparison of geostatistical models: Application to the Macrodispersion Experiment (MADE) site. Journal of Hydrology 531: 543-556.
MacIntyre W. G., C. P. Antworth, and T. B. Stauffer. 1993. Database for the Second Macro-dispersion Experiment (MADE-2). Tech. Rep. TR-102072.
Mendes, R. M. and R. Lorandi. 2006. Indicator kriging geostatistical methodology applied to geotechnics project planning. IAEG2006, paper number 527.
Mosammam, A. M. 2012. Geostatistics: modeling spatial uncertainty, second edition. Taylor & Francis.
Ogata, A., 1970. Theory of dispersion in granular media. Geological Survey professional paper 411-1.

Rehfeldt, K. R., L. W. Gelhar, J. B. Southard, and A. M. Dasinger. 1989. Estimates of macrodispersivity based on analyses of hydraulic conductivity variability at the MADE site. EPRI Interim Rep. EN-6405.
Stark, C. P. 1991. An invasion percolation model of drainage network evolution. Nature 352: 423-425.
Tavares, M. T., A. J. Sousa, M. M. Abreu. 2007. Ordinary kriging and indicator kriging in the cartography of trace elements contamination in São Domingos mining site (Alentejo, Portugal). Journal of Geochemical Exploration 98, no.1-2: 43-56.

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top