跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 19:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉朕宇
研究生(外文):Zhen-YuLiu
論文名稱:添加奈米銀粒子於主動層及ZnO/Ag/ZnO之多層結構反置有機高分子太陽能電池之研究
論文名稱(外文):Performance Improvement of Inverted Polymer Solar Cells with Silver Nanoparticles Doped in Active Layer and ZnO/Ag/ZnO Multilayer Structure
指導教授:李清庭
指導教授(外文):Ching-Ting Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:74
中文關鍵詞:反置有機太陽能電池奈米銀粒子局域性表面電漿
外文關鍵詞:inverted polymer solar cellssilver nanoparticleslocalized surface plasmon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用磁控式射頻濺鍍系統鍍製ZnO/Ag/ZnO薄膜,作為反置型有機太陽能電池之電子傳輸層,藉由奈米銀粒子的表面電漿效應,提升電子傳輸層於可見光波段的穿透率,使短路電流密度提升,進而改善整體元件轉換效率,實驗結果ZnO/Ag/ZnO多層結構薄膜最佳條件為銀厚度8 nm,轉換效率由7.25%提升至8.13%。另外加入奈米銀粒子於PTB7:PCBM混合作為主動層材料,藉由奈米銀粒子於主動層中的散射效應,提升主動層材料的吸光能力,提升激發電子電洞對之機率,增加短路電流密度進而改善元件轉換效率,實驗結果為主動層最佳比例條件為PTB7:PCBM:Ag NPs=10:15:0.4 (mg),轉換效率由7.25%提升至7.55%。結合最佳主動層摻雜奈米銀比例及最佳ZnO/Ag/ZnO電子傳輸層作為反置有機高分子太陽能電池元件,元件轉換效率為8.30%。
In this work, the ZnO/Ag/ZnO multilayer film was applied to inverted polymer solar cells (IPSCs) as electron transportation layer to improve power conversion efficiency (PCE) of IPSCs. By inserting a nano-sized Ag layer between bottom ZnO and top ZnO layer, the light transmission of electron transportation layer could be enhanced resulting from local-ized surface plasmon (LSP) of silver nanoparticles at visible wavelength. The power con-version efficiency of IPSCs with ZnO/Ag/ZnO (Ag=8 nm) electron transportation layer improved from 7.25% to 8.13%. Besides, silver nanoparticles was doped into the active layer (PTB7:PCBM) of IPSCs. The light absorption of devices could be enhanced result-ing from optical re-flection by scattering of silver nanoparticles. Compared to the active layer without silver nanoparticles, the power conversion efficiency of IPSCs with PTB7:PCBM:Ag NPs (10:15:0.4) active layer improved from 7.25% to 7.55%. Combinating ZnO/Ag/ZnO electron transportation layer and active layer with silver nanoparticles, the best performance of the IPSCs was obtained that power conversion efficiency was 8.30%.
摘要....................................II
Abstract...............................III
誌謝....................................X
目錄....................................XI
表目錄..................................XIII
圖目錄..................................XIV
第一章 序論.............................1
1-1研究動機及目的........................1
1-2有機太陽能電池簡介....................2
參考文獻................................9
第二章 太陽能電池之基本原理以及相關理論....13
2-1太陽光譜.............................13
2-2光電效應與太陽能電池..................13
2-3有機材料能帶理論......................14
2-4有機太陽能電池之工作原理...............15
2-5有機太陽能電池各項參數.................16
2-6奈米材料的基本性質....................20
2-7表面電漿子介紹........................22
參考文獻................................30
第三章 實驗方法、材料介紹及量測儀器原理.....32
3-1製程機台介紹..........................32
3-2材料介紹.............................32
3-3量測機台介紹..........................33
3-4實驗步驟.............................36
參考文獻................................53
第四章 添加奈米銀粒子於主動層及ZnO/Ag/ZnO之多層結構反置有機高分子太陽能電池研究.........................55
4-1前言.................................55
4-2有機太陽能電池特性分析與最佳化..........56
參考文獻................................70
第五章 結論..............................73


第一章 序論
[1]K. W. J. Barnham, M. Mazzer, and B. Clive, “Resolving the energy crisis: nuclear or photovoltaics, Nat. Mater.,vol. 5, pp. 161-164, 2006.
[2]M. Yamaguchi, “III-V compound multi-junction solar cells:Present andfuture, Sol. Energy Mater. Sol. Cells., vol. 75, pp. 261-269, 2003.
[3]B. Rech, T. Repmann, M. N. V. D. Donker, M. Berginski, T. Kilper, J. Hüpkes, S. Calnan, H. Stiebig, and S. Wieder, “Challenges in micro-crystalline silicon based solar cell technology, Thin Solid Films, vol. 511-512, pp. 548-555, 2006.
[4]Y. S. Lin and Z. S. Wu, “Leading nano-Ag particles on the textured seed layer to enhance the optoelectronic properties of Al-doped ZnO layres, Vacuum, vol. 116, pp. 139-143, 2015.
[5]B. O'Regan and M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2, Nature.,vol. 353, pp. 737-740, 1991.
[6]C. W. Tang, “Two-layer organic photovoltaic cell, Appl. Phys. Lett., vol 48, pp. 183-185, 1986.
[7]P. Peumans and S. R. Forrest, “Very-high-efficiency doublehetero-structurecopper phthalocyanine/C60 photovoltaic cells, Appl. Phys. Lett., vol. 79, pp. 126-128, 2001.
[8]W. H. Chen, J. H. Panand, and Y. M. Chou,“Conjugated poly-mer-based solar cells,Chem. Soc. Rev.,vol. 67, pp. 61-66, 2009.
[9]J. Tsukamoto, H, Ohigashi, K. Matsumura, and A. Takahashi, ‘‘A schottky barrier type solar cell using polyacetylene’’, Jpn. J. Appl. Phys., vol. 20, pp. 127-129, 1981.
[10]N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from conducting polymer to buckminsterfullerene, Science, vol. 258, pp. 1474-1476, 1992.
[11]G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells:Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, vol. 270, pp. 1789-1791, 1995.
[12]S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, “2.5% efficient organic plastic solar cells, Appl. Phys. Lett., vol. 78, pp. 841-843, 2001.
[13]F. Padinger, R. S. Rittberger, and N. S. Sariciftci, “Effect of postpro-duction treatment on plastic solar cells, Adv. Funct. Mater., vol. 13, pp. 85-88, 2003.
[14]G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene), J. Appl. Phys., vol. 98, pp. 043704-1-043704-5, 2005.
[15]W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermall stable, efficient polymer solar cells with nanoscale control of the interpene-trating network morphology, Adv. Funct. Mater., vol. 15, pp. 1617-1622, 2005.
[16]M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, “Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion effi-ciency, Adv. Mater., vol. 18, pp. 789-794, 2006.
[17]L. J. A. Koster, V. D. Mihailetchi, and P. W. M. Blom, “Ultimate effi-ciency of polymer/fullerene bulk heterojunction solar cells, Appl. Phys. Lett., vol. 88, pp. 093511-1-093511-3, 2006.
[18]G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, “Efficient in-verted polymer solar cells, Appl. Phys. Lett., vol. 88, pp. 253503-1-253503-3, 2006.
[19]M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, “Inverted bulk-heterojunction organic photovoltaic deviceusing a solution-derived ZnO underlayer, Appl. Phys. Lett., vol. 89, pp. 143517-1-143517-3, 2006.
[20]C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, “An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron col-lecting layers, J. Mater. Chem., vol. 19, pp. 1643-1647, 2009.
[21]H. H. Liao, L. M. Chen, Z. Xu, G. Li, and Y. Yang, “Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer, Appl. Phys. Lett., vol. 92, pp. 173303-1-173303-3, 2008.

第二章 太陽能電池之基本原理以及相關理論
[1]H. Hertz, “The photovoltaic effect, Ann. Phys., vol. 31, pp. 421-983, 1887.
[2]P. Stallinga, “Electronic transport in organic materials:Comparison of bandtheory with percolation / (variable range) hopping theory, Adv. Mater., vol. 23, pp. 3356-3362, 2011.
[3]傅聖文,「外應力對可撓式有機太陽能電池之影響」,國立成功大學電機工程研究所碩士論文,2009。
[4]H. Hoppe and N. S. Sariciftci, “Organic solar cells:An overview, J. Mater. Res., vol. 19, pp. 1924-1945, 2004.
[5]P. K. Nayak, “Exciton binding energy in small organic conjugated molecule, Synth. Met., vol. 174, pp. 42-45, 2013.
[6]T. Stübinger and W. Brütting, “Exciton diffusion and optical interfer-ence in organic donor-acceptor photovoltaic cells, J. Appl. Phys., vol. 90, pp. 3632-3641, 2001.
[7]P. Peumans and S. R. Forrest, “Very-high-efficiency double etero-structure copper phthalocyanine/C60 photovoltaic cells, Appl. Phys. Lett., vol. 79, pp. 126-128, 2001.
[8]A. Molitonand J. M. Nunzi,“How to model the behaviour of organic photovoltaic cells, Polym. Int., vol. 55, pp. 583-600, 2006.
[9]J. M. Nunzi, “Organic photovoltaic materials and devices, C. R. Phy-sique., vol. 3, 2002.
[10]曹茂盛,「奈米材料導論」,學富文化出版社,2002。
[11]C. Deibel and V. Dyakonov, ‘‘Polymer–Fullerene bulk heterojunction solar cells’’, Rep. Prog. Phys., vol. 73, pp. 096401-1-096401-68, 2010.
[12]Emil Roduner, “Size matters:why nanomaterials are different, Chem. Soc. Rev., vol. 35, pp. 583-592, 2006.
[13]A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, ‘‘Nano-optics of surface plasmon polaritons’’, Phys. Reports., vol. 408, pp. 131-314, 2005.
[14]K. R. Catchpole and A. Polman, ‘‘Plasmonic solar cells’’, Opt. Ex-press., vol. 16, pp. 21793-21800, 2008.

第三章 實驗方法、材料介紹及量測儀器原理
[1]V. A. Dao, T. Le, T. Tran, H. C. Nguyen, K. Kim, J. Lee, S. Jung, N. Lakshminarayan, and J. Yi, “Electrical and optical studies of trans-parent conducting ZnO:Al thin films by magnetron dc sputtering, J. Electroceram., vol. 23, pp. 356-360, 2009.
[2]X. Bie, J. G. Lu, L. Gong, L. Lin, B. H. Zhan, and Z. Z. Ye, “Trans-parent conductive ZnO:Ga films prepared by DC reactive magnetron sputtering at low temperature, Appl. Surf. Sci., vol. 256, pp. 289-293, 2009.
[3]Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%, Adv. Energy. Mater., vol. 22, pp. E135-E138, 2010.
[4]P. Y. Silvert, R. H. Urbina, N. Duvauchelle, V. Vijayakrishnan, and K. T. Elhsissen, “Preparation of colloidal silver dispersions by the polyol process, J. Mater. Chem., vol. 4, pp, 573-577, 1996.
[5]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO, Superlattices and Mi-crostructures, vol. 34, pp. 3-32, 2003.
[6]H. Ahme and E. R. Weber, “Spectroscopic investigation of chaege carries in the donor/acceptor network of organic solar cells, University of Freiburg, 2014.
[7]A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, Z. W. Zhao, and D. L. Kwong, “An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selec-tive layer, Appl. Phys. Lett., vol. 93, pp. 221107-1-221107-3, 2008.
[8]R. Lampande, G. W. Kim, J. Boizot, Y. J. Kim, R. Pode, and J. H. Kwon, “A highly efficient transition metal oxide layer for hole extrac-tion and transport in inverted polymer bulk heterojunction solar cells, J. Mater. Chem., vol. 1, pp. 6895-6900, 2013.
[9]M. Ito, K. Palanisamy, A. Kumar, V. S. Murugesan, P. K. Shin, N. Tsuda, J. Yamada, and S. Ochiai, “Characterization of.the organic thin film solar cells with active layer of PTB7/PC71BM prepared by using solvent mixtures with different additives, Int. J. Photoenergy, vol. 2014, pp. 694541-1-694541-8, 2014.
[10]吳凱第,「奈米銀粒子與光硬化環氧樹脂-銀奈米複合材料之製備及性質研究」,國立交通大學 工學院 半導體與製程產業研發碩士專班碩士論文,2008。

第四章 添加奈米銀粒子於主動層及ZnO/Ag/ZnO之多層結構反置有機高分子太陽能電池研究
[1]H. Choi, J. P. Lee, S. J. Ko, J. W. Jung, H. Park, S. Yoo, O. Park, J. R. Jeong, S. Park, and J. Y. Kim, “Multipositional silica-coated silver nanoparticlse for high-performance polymer solar cells, Nano. Lett., vol. 13, pp. 2204-2208, 2013.
[2]Y. Hao, J. C. Song, F. Yang, Y. Y. Hao, Q. J. Sun, J. J. Guo, Y. X. Cui, H. Wang, and F. Zhu, “Improved performance of organic solar cells by incorporating silica-coated silver nanoparticles in the buffer layer, J. Mater. Chem. C, vol. 3, pp. 1082-1090, 2015.
[3]H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices, Nat. Mat., vol. 9, pp. 205-213, 2010.
[4]J. T. Guske, J. Brown, A. Welsh, and S. Franzen, “Infrared surface plasmon resonance of AZO-Ag-AZO sandwich thin films, Opt. Ex-press., vol. 20, pp. 23215-23226, 2012.
[5]I. Crupi, S. Boscarino, V. Strano, S. Mirabella, F. Simone, and A. Terrasi, “Optimization of ZnO:Al/Ag/ZnO:Al structures for ultra-thin high-performance transparent conductive electrodes, Thin Solid Films, vol. 520, pp. 4432-4435, 2012.
[6]S. W. Baek, J. H. Noh, C. H. Lee, B. S. Kim, M. K. Seo, and J. Y. Lee, “Plasmonic forward scattering effect in organic solar cell:a powerful optical engineering method, Sci. Rep., vol. 3, pp. 1726-1-1726-7, 2013.
[7]D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, “Enhanced power conversion effi-ciency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters, Adv. Energy Mater., vol. 1, pp. 766-770, 2011.
[8]Y. Zhong, K. Suzuki, D. Inoue, D. Hashizum, S. Izawa, K. Hashimoto, T. Koganezawa, and K. Tajima, “Interface-induced crystallization and nanostructure formation of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in polymer blend films and its application in photovoltaics, J. Mater. Chem. A, vol. 4, pp. 3335-3341, 2016.
[9]H. L. Yip and A. K. Y. Jen, “Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells, Energy Environ., vol. 5, pp. 5994-6011, 2012.
[10]M. Yamamoto and M. Nakamoto, “Novel preparation of monodis-persed silver nanoparticles via amine adducts derived from insoluble silver myristate in tertiary alkylamine, J. Mater. Chem., vol. 13, pp. 2064-2065, 2003.
[11]W. Shen, J. Tang, R. Yang, H. Cong, X. Bao, Y. Wang, X. Wang, Z. Huang, J. Liu, L. Huang, J. Jiao, Q. Xu, W. Chen, and L. A. Belfiore, “Enhanced efficiency of polymer solar cells by incorporated Ag-SiO2 core-shell nanoparticles in the active layer, RSC Adv., vol. 4, pp. 4379-4386, 2014.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top