跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 03:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝晉陽
研究生(外文):Chin-YangHsieh
論文名稱:以液相沉積二氧化鋯研製增強型氮化銦鋁/氮化鎵金氧半高電子遷移率電晶體
論文名稱(外文):Enhancement-Mode InAlN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors with Liquid Phase Deposited Zirconium Oxide
指導教授:王永和王永和引用關係方炎坤方炎坤引用關係
指導教授(外文):Yeong-Her WangYean-Kuen Fang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:100
中文關鍵詞:氮化鎵氮化銦鋁金氧半高電子遷移率電晶體閘極掘入液相沉積法二氧化鋯
外文關鍵詞:GaNInAlNMOShigh electron mobility transistorgate recess processliquid-phase depositionZrO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中我們成功利用閘極掘入的方式製作出增強型氮化銦鋁/氮化鎵金氧半高電子遷移率電晶體。傳統的氮化銦鋁/氮化鎵電晶體因為極化效應而擁有高濃度的二維電子氣,即使在閘極未加偏壓的情況下通道還是有電流產生,會造成額外的功率消耗。因此我們將元件製作成增強型電晶體來改善此缺點,同時也可以簡化電路設計,來減少設計成本。
在研究裡我們利用閘極掘入的方式減少閘極下方二維電子氣的濃度,將高電子遷移率電晶體從空乏型轉變為增強型。除此之外,利用液相沉積的技術在閘極下方沉積高介電常數二氧化鋯薄膜,修補表面因電漿蝕刻而造成的缺陷,減少漏電流,並且可以承受更大的崩潰電壓,改善元件特性。
我們以液相沉積及閘極掘入的方式製作的增強型氮化銦鋁/氮化鎵金氧半高電子遷移率電晶體,其臨界電壓可提升至0.3 V,最大電流密度達167 mA/mm,最大轉導值為82 mS/mm,電流開關比和次臨界擺幅則可以達到2.02 × 106和251 mV/mm,閘極漏電流能有效降低至3.56 × 10-7 A/mm,而崩潰電壓可提升到67 V,同時元件的高頻特性與低頻雜訊和傳統的高電子遷移率電晶體相比皆能有所改善。
In this study, we successfully fabricated the enhancement-mode (E-mode) InAlN/GaN MOSHEMTs by the gate-recessed techniques. Conventional InAlN/GaN HEMTs with high concentration two-dimensional electron gas (2DEG) exist due to the inherent polarization effects. A current still exists in the channel even if bias was not applied to the gate, thereby resulting in additional power consumption. Therefore, we developed E-mode HEMTs to overcome this disadvantage, and utilize E-mode HEMTs to simplify the circuit and reduce the design cost.
The gate-recessed process was used in the study to decrease the 2DEG concentration under the gate electrode, converting the depletion-mode HEMT to enhancement-mode HEMT. Furthermore, liquid-phase deposition (LPD) is utilized to deposit a high dielectric constant thin film of ZrO2. The deposited ZrO2 can improve device properties by repairing surface defects resulting from ICP etching and reducing leakage. Moreover, the breakdown voltage can also be enhanced.
The E-mode InAlN/GaN MOSHEMTs in this study were fabricated using the LPD process and the gate recess technique. The threshold voltage of a device can be shifted to 0.3 V, in which the maximum drain current density reaches approximately 167 mA/mm. The maximum transconductance is 82 mS/mm. The Ion/Ioff ratio and the subthreshold swing are improved to 2.02 × 106 and 251 mV/dec, respectively. Most importantly, the gate leakage current decreased to 3.56 × 10-7 A/mm, and breakdown voltage achieved 67 V. The high-frequency characteristics and low-frequency noise compared with that of conventional HEMT also improved.
ABSTRACT (Chinese)......................................I
ABSTRACT (English)....................................III
ACKNOWLEDGEMENT.........................................V
CONTENTS..............................................VII
FIGURE CAPTIONS........................................IX
TABLE CAPTIONS........................................XII
Chapter 1 Introduction..................................1
1.1 Background.........................................1
1.2 Motivation.........................................6
1.3 Organization.......................................9
Chapter 2 Theory of InAlN/GaN Material.................10
2.1 Lattice Structure.................................10
2.2 InAlN/AlN/GaN heterojunction property.............12
2.2.1 Spontaneous Polarization.......................12
2.2.2 Piezoelectric Polarization.....................15
2.2.3 Two-Dimensional Electron Gas (2DEG)............19
2.3 Modeling of InAlN/GaN HEMT........................22
2.3.1 Drain current model............................22
2.3.2 Simulation results.............................29
Chapter 3 Experiments and Device Fabrication...........35
3.1 Experimental Equipment............................35
3.1.1 Spin Coater....................................35
3.1.2 Mask Aligner...................................36
3.1.3 E-gun Evaporator and Sputter (PVD).............37
3.1.4 LPD System.....................................38
3.1.5 Rapid Thermal Annealing (RTA) System...........39
3.1.6 ICP Etching System.............................40
3.1.7 Semiconductor Parameter Analyzer...............41
3.2 Liquid-phase deposited ZrO2.......................42
3.2.1 Material Properties of ZrO2....................42
3.2.2 LPD system and experimental procedures.........44
3.3 Gate Recess Etching...............................47
3.4 Fabrication Process...............................48
3.4.1 Mesa Isolation.................................48
3.4.2 Source and Drain Ohmic Contact.................49
3.4.3 Gate Pattern Definition........................50
3.4.4 Partial Recess.................................51
3.4.5 Schottky Gate Contact..........................51
Chapter 4 Results and Discussion.......................56
4.1 Properties of liquid-phase deposited ZrO2.........56
4.1.1 X-ray Photoelectron Spectroscopy (XPS).........56
4.1.2 X-Ray Diffraction (XRD)........................58
4.1.3 Atomic Force Microscope (AFM)..................59
4.1.4 Transmission Electron Microscopy (TEM).........61
4.2 Device Performance................................64
4.2.1 Saturation Drain Current.......................64
4.2.2 Transfer Characteristics and Transconductance..67
4.2.3 Subthreshold Swing.............................70
4.2.4 Gate leakage Current...........................72
4.2.5 OFF-State Breakdown Voltage....................74
4.2.6 Capacitance-Voltage Measurement................76
4.2.7 Pulse I-V Characteristics......................77
4.2.8 Cutoff Frequency & Maximum Oscillation Frequency .79
4.2.9 Flicker Noise..................................81
4.2.10 Output Power Characteristic....................83
Chapter 5 Conclusion...................................84
Chapter 6 Future Work..................................88
References.............................................90
[1]U. K. Mishra, and T. E. Kazior, “GaN-Based RF Power Devices and Amplifiers, Proc. IEEE, vol. 96, no. 2, pp. 287–305, Feb. 2008.
[2]L. F. Eastman, and U.K. Mishra, “The Toughest Transistor Yet [GaN transistors], IEEE SPECTRUM, vol. 39, pp. 28-33, May 2002.
[3]W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, T. Ogura, and H. Ohashi, “High Breakdown Voltage AlGaN–GaN Power-HEMT Design and High Current Density Switching Behavior, IEEE Trans. Electron Devices, vol. 50, no. 12, pp. 2528-2531, Dec. 2003.
[4]S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, “III–Nitrides: Growth, Characterization, and Properties, J. Appl. Phys., vol. 87, no. 3, pp. 965-1006, Feb. 2000.
[5]T. Palacios, C. S. Suh, A. Chakraborty, S. Keller, S. P. DenBaars, and U. K. Mishra, “High-performance E-mode AlGaN/GaN HEMTs, IEEE Electron Device Letters, vol. 27, no. 6, pp. 428-430, 2006.
[6]J. Kuzmik, G. Pozzovivo, C. Ostermaier, G. Strasser, D. Pogany, E. Gornik, and N. Grandjean, “Analysis of degradation mechanisms in lattice-matched InAlN/GaN high-electron-mobility transistors, Journal of Applied Physics, vol. 106, no. 12, pp. 124503, 2009.
[7]J. Kuzmík, “InAlN/(In) GaN high electron mobility transistors: some aspects of the quantum well heterostructure proposal, Semiconductor Science and Technology, vol. 17, no. 6, pp. 540, Jan. 2002.
[8]M. Neuburger, T. Zimmermann, E. Kohn, A. Dadgar, F. Schulze, A. Krtschil, and I. Daumiller, “Unstrained InAlN/GaN HEMT structure, International journal of high speed electronics and systems, vol. 14, no. 03, pp. 785-790, 2004.
[9]O. Katz, D. Mistele, B. Meyler, G. Bahir, and J. Salzman, “InAlN/GaN heterostructure field-effect transistor DC and small-signal characteristics, Electronics Letters, vol. 40, no. 20, pp. 1304-1305, 2004.
[10]O. Jardel, G. Callet, J. Dufraisse, M. Piazza, N. Sarazin, E. Chartier, and M. A. D. F. Poisson, “Electrical performances of AlInN/GaN HEMTs, A comparison with AlGaN/GaN HEMTs with similar technological process. International journal of microwave and wireless technologies, vol. 3, no. 03, pp. 301-309, 2011.
[11]M. Gonschorek, J. F. Carlin, E. Feltin, M. A. Py, and N. Grandjean, “High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures, Applied physics letters, vol. 89, no. 6, pp. 2106, 2006.
[12]J. Xie, X. Ni, M. Wu, J. H. Leach, Ü. Özgür, and H. Morkoç, “High electron mobility in nearly lattice-matched AlInN∕AlN∕GaN heterostructure field effect transistors, Applied Physics Letters, vol. 91, no. 13, 2007.
[13]F. Medjdoub, J. F. Carlin, M. Gonschorek, E. Feltin, M. A. Py, D. Ducatteau, and E. Kohn, “Can InAlN/GaN be an alternative to high power/high temperature AlGaN/GaN devices? IEEE International Electron Devices Meeting, pp. 1-4, 2006.
[14]F. Lecourt, N. Ketteniss, H. Behmenburg, N. Defrance, V. Hoel, M. Eickelkamp, and J. C. De Jaeger, “InAlN/GaN HEMTs on sapphire substrate with 2.9-W/mm output power density at 18 GHz, IEEE Electron Device Letters, vol. 32, no. 11, pp. 1537-1539, 2011.
[15]R. Aubry, J. C. Jacquet, M. Oualli, O. Patard, S. Piotrowicz, E. Chartier, and M. Magis, “ICP-CVD SiN Passivation for High-Power RF InAlGaN/GaN/SiC HEMT, IEEE Electron Device Letters, vol. 37, no. 5, pp. 629-632, 2016.
[16]D. Maier, M. Alomari, N. Grandjean, J. F. Carlin, M. A. Diforte-Poisson, C. Dua, and E. Kohn, “InAlN/GaN HEMTs for Operation in the 1000 Regime: A First Experiment, IEEE Electron Device Letters, vol. 33, no. 7, pp. 985-987, 2012.
[17]P. Herfurth, D. Maier, L. Lugani, J. F. Carlin, R. Rosch, Y. Men, and E. Kohn, “Ultrathin Body InAlN/GaN HEMTs for High-Temperature (600) Electronics,. IEEE Electron Device Letters, vol. 34, no. 4, pp. 496-498, 2013.
[18]N. Grandjean, J. Novák, and K. Fröhlich, “RF Performance of InAlN/GaN HFETs and MOSHFETs With fT× LG up to 21 GHz· µm, IEEE ELECTRON DEVICE LETTERS, vol. 31, no. 3, 2010.
[19]G. H. Jessen, J. K. Gillespie, G. D. Via, A. Crespo, D. Langley, M. E. Aumer, and D. P. Partlow, “RF power measurements of InAlN/GaN unstrained HEMTs on SiC substrates at 10 GHz, IEEE electron device letters, vol. 28, no. 5, pp. 354-356, 2007.
[20]Q. Zhou, H. Chen, C. Zhou, Z. H. Feng, S. J. Cai, and K. J. Chen, “Schottky source/drain InAlN/AlN/GaN MISHEMT with enhanced breakdown voltage, IEEE Electron Device Letters, vol. 33, no. 1, pp. 38-40, 2012.
[21]H. S. Lee, D. Piedra, M. Sun, X. Gao, S. Guo, and T. Palacios, “3000-V 4.3-InAlN/GaN MOSHEMTs With AlGaN Back Barrier, IEEE Electron Device Letters, vol. 33, no. 7, pp. 982-984, 2012.
[22]O. Katz, D. Mistele, B. Meyler, G. Bahir, and J. Salzman, “Characteristics of InxAl1-xN-GaN high-electron mobility field-effect transistor, IEEE Transactions on Electron Devices, vol. 52, no. 2, pp. 146-150, 2005.
[23]D. S. Lee, X. Gao, S. Guo, and T. Palacios, “InAlN/GaN HEMTs with AlGaN back barriers, IEEE Electron Device Letters, vol. 32, no. 5, pp. 617-619, 2011.
[24]D. S. Lee, J. W. Chung, H. Wang, X. Gao, S. Guo, P. Fay, and T. Palacios, “245-GHz InAlN/GaN HEMTs with oxygen plasma treatment, IEEE Electron Device Letters, vol. 32, no. 6, pp. 755-757, 2011.
[25]Q. Zhou, W. Chen, S. Liu, B. Zhang, Z. Feng, S. Cai, and K. J. Chen, “Schottky-contact technology in InAlN/GaN HEMTs for breakdown voltage improvement, IEEE Transactions on Electron Devices, vol. 60, no. 3, pp. 1075-1081, 2013.
[26]Z. Peng, Z. Sheng-Lei, X. Jun-Shuai, Z. Jie-Jie, M. Xiao-Hua, Z. Jin-Cheng, and H. Yue, “Investigation of trap states in Al2O3 InAlN/GaN metal–oxide–semiconductor high-electron-mobility transistors, Project supported by the Program for National Natural Science Foundation of China, Grant Nos. 61404100 and 61306017, Chinese Physics B, vol. 24, no. 12, pp. 127306, 2015.
[27]R. Wang, P. Saunier, Y. Tang, T. Fang, X. Gao, S. Guo, and H. Xing, “Enhancement-Mode InAlN/AlN/GaN HEMTs With Leakage Current and on/off Current Ratio, IEEE Electron Device Letters, vol. 32, no. 3, pp. 309-311, 2011.
[28]M. K. Bera, Y. Liu, L. M. Kyaw, Y. J. Ngoo, S. P. Singh, and E. F. Chor, “Positive threshold-voltage shift of Y2O3 gate dielectric InAlN/GaN-on-Si (111) MOSHEMTs with respect to HEMTs, ECS Journal of Solid State Science and Technology, vol. 3, no. 6, pp. Q120-Q126, 2014.
[29]I. Hwang, J. Kim, H. S. Choi, H. Choi, J. Lee, K. Y. Kim, and J. Shin, “p-GaN gate HEMTs with tungsten gate metal for high threshold voltage and low gate current, IEEE Electron Device Letters, vol. 34, no. 2, pp. 202-204, 2013.
[30]T. Mizutani, M. Ito, S. Kishimoto, and F. Nakamura, “AlGaN/GaN HEMTs with thin InGaN cap layer for normally off operation,. IEEE Electron Device Letters, vol. 28, no. 7, pp. 549-551, 2007.
[31]J. W. Chung, O. I. Saadat, J. M. Tirado, X. Gao, S. Guo, and T. Palacios, “Gate-Recessed InAlN/GaN HEMTs on SiC Substrate With Passivation, IEEE Electron Device Letters, vol. 30, no. 9, pp. 904-906, 2009.
[32]W.B. Lanford, T. Tanaka, Y. Otoki, and I. Adesida, “Recessed-Gate Enhancement-Mode GaN HEMT with High Threshold Voltage, Electron. Lett., vol. 41, no. 7, pp. 449-450, Mar. 2005.
[33]W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, “Recessed-Gate Structure Approach Toward Normally Off High-Voltage AlGaN/GaN HEMT for Power Electronics Applications, IEEE Trans. Electron Devices, vol. 53, no. 2, pp. 356-362, Feb. 2006.
[34]T. Oka, and T. Nozawa, “AlGaN/GaN Recessed MIS-Gate HFET with High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications, IEEE Electron Device Lett., vol. 29, no. 7, pp. 668-670, Jul. 2008.
[35]K. S. Im, J. B. Ha, K. W. Kim, J. S. Lee, D. S. Kim, S. H. Hahm, and J. H. Lee, “Normally Off GaN MOSFET Based on AlGaN/GaN Heterostructure With Extremely High 2DEG Density Grown on Silicon Substrate, IEEE Electron Device Lett., vol. 31, no. 3, pp. 192-194, Mar. 2010.
[36]M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, “Enhancement-Mode GaN MIS-HEMTs With n-GaN/i-AlN/n-GaN Triple Cap Layer and High-k Gate Dielectrics, IEEE Electron Device Lett., vol. 31, no. 3, pp. 189-191, Mar. 2010.
[37]F.M edjdoub, M. Alomari, J. F. Carlin, M. Gonschorek, E. Feltin, M. A. Py, and E. Kohn, “Barrier-layer scaling of InAlN/GaN HEMTs, IEEE Electron device letters, vol. 29, no 5, pp. 422-425, 2008.
[38]C. Ostermaier, G. Pozzovivo, J. F. Carlin, B. Basnar, W. Schrenk, Y. Douvry, and M. Gonschorek, “Ultrathin InAlN/AlN barrier HEMT with high performance in normally off operation, IEEE Electron Device Letters, vol. 30, no. 10, pp. 1030-1032, 2009.
[39]F. Medjdoub, M. Alomari, J. F.C arlin, M. Gonschorek, E. Feltin, M. A. Py, and E. Kohn, “Effect of fluoride plasma treatment on InAlN/GaN HEMTs, Electronics Letters, vol. 44, no. 11, pp. 696-698, 2008.
[40]J. Kuzmik, G. Pozzovivo, S. Abermann, J. F. Carlin, M. Gonschorek, E. Feltin, and D. Pogany, “Technology and Performance of InAlN/AlN/GaN HEMTs With Gate Insulation and Current Collapse Suppression Using ZrO2 or HfO2, IEEE Transactions on Electron Devices, vol. 55, no. 3, pp. 937-941 (2008).
[41]S. Abermann, G. Pozzovivo, J. Kuzmik, C. Ostermaier, C. Henkel, O. Bethge, and E. Bertagnolli, “Current collapse reduction in InAIN/GaN MOSHEMTs by in situ surface pre-treatment and atomic layer deposition of ZrO2 high-k gate dielectrics, Electronics Letters, vol. 45, no. 11, pp. 570-572, 2009.
[42]D. Xu, K. K. Chu, J. A. Diaz, M. Ashman, J. J. Komiak, L. M. Pleasant, and P. C. Chao, “0.1-Atomic Layer Deposition Al2O3 Passivated InAlN/GaN High Electron-Mobility Transistors for E-Band Power Amplifiers,. IEEE Electron Device Letters, vol. 36, no. 5, pp. 442-444 2015.
[43]P. E. Van Camp, V. E. Van Doren, and J. T. Devreese, “High-Pressure Properties of Wurtzite- and Rocksalt-Type Aluminum Nitride, Phys. Rev. B, vol. 44, no.16, pp. 9056-9059, Oct. 1991.
[44]T. Yao, S.-K. Hong, Oxide and Nitride Semiconductors: Processing, Properties, and Applications. New York: Springer, 2009.
[45]B. Paulus, F. J. Shi, and H. Stoll, “A Correlated AB Initio Treatment of The Zinc-Blende Wurtzite Polytypism of SiC and III - V Nitrides, J. Phys.: Condens. Matter, vol. 9, pp. 2745-2758, 1997.
[46]S. Y. Wu, Low Temperature Phase Separation in Nanowires. INTECH Open Access Publisher, 2010.
[47]L. Lugani, Leakage mechanisms and contact technologies in InAlN/GaN high electron mobility transistors Doctoral dissertation, 2015.
[48]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger and J. Hilsenbeck, “Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures, J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, Mar.1999.
[49]J. H. Edgar, Properties of Group III Nitrides. London:INSPEC, 1994.
[50]F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous Polarization and Piezoelectric Constants of III-V Nitrides, Phys. Rev. B, vol. 56, no. 16, pp. R10024-R10027, Oct. 1997.
[51]W. Q. Chen and S. K.Hark, “Strain-Induced Effects in (111)-Oriented InAsP/InP, InGaAs/InAlAs Quantum Wells on InP Substrates, J. Appl. Phys., vol. 77, no. 11, pp. 5747-5749, Feb. 1995.
[52]S. Ganguly, A. Konar, Z. Hu, H. Xing, and D. Jena, “Polarization effects on gate leakage in InAlN/AlN/GaN high-electron-mobility transistors, Applied Physics Letters, vol. 101, no. 25, pp. 253519, 2012.
[53]M. Gonschorek, J. F. Carlin, E. Feltin, M. A. Py, N. Grandjean, V. Darakchieva, and G. Ramm, “Two-dimensional electron gas density in Al1−xInxN/AlN/GaN heterostructures (0.03≤ x≤ 0.23), Journal of Applied Physics, vol. 103, no. 9, pp. 093714, 2008.
[54]H. He, Y. Cao, R. Fu, W. Guo, Z.H uang, M. Wang, and H.W ang, “Band gap energy and bowing parameter of In-rich InAlN films grown by magnetron sputtering,. Applied Surface Science, vol. 256, no. 6, pp.1812-1816, 2010.
[55]J. Kuzmík, “Power electronics on InAlN/(In) GaN: Prospect for a record performance, IEEE Electron Device Letters, vol. 22, no. 11, pp. 510-512, 2001.
[56]F. Medjdoub, J. F. Carlin, C. Gaquiere, N. Grandjean, and E.Kohn, “Status of the emerging InAlN/GaN power HEMT technology, Open Electrical & Electronic Engineering Journal, vol. 2, pp. 1-7.
[57]C. T. Sah, “Characteristics of the metal-oxide-semiconductor transistors, IEEE Transactions on Electron Devices, vol. 11, no. 7, pp. 324-345, Jul. 1964.
[58]C. H. Yu, C. Y. Hsieh, C. Y. Ke, P. W. Sze, C. L. Wu, Y. H. Wang, “Enhancement-Mode AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors with Liquid Phase Deposited Zirconium Oxide Gate Dielectric, International Symposium on Next-Generation Electronics, Hsinchu, Taiwan, May 6, 2016
[59]W. Fikry, G. Ghibaudo, H. Haddara, S. Cristoloveanu, and M. Dutoit, “Method for extracting deep submicrometer MOSFET parameters, Electronics Letters, vol. 31, no. 9, pp. 762-764, Apr. 1995.
[60]T. J. Anderson, M. J. Tadjer, M. A. Mastro, J. K. Hite, K. D. Hobart, C. R. Eddy, and F.J. Kub, “Characterization of recessed-gate AlGaN/GaN HEMTs as a function of etch depth, Journal of electronic materials, vol. 39, no. 5, pp. 478-481, Aug. 2010.
[61]J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors, Reports on Progress in Physics, vol. 69, no. 2, pp. 327, 2005.
[62]C. C. Hu, M. S. Lin, T. Y. Wu, F. Adriyanto, P. W. Sze, C. L. Wu, and Y. H. Wang, “AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor with liquid-phase-deposited Barium-doped TiO2 as a gate dielectric, IEEE Transactions on electron devices, vol. 59, no.1, pp. 121-127, Jan. 2012.
[63]Y. Song, R. Xu, J. He, S. Siontas, A. Zaslavsky, and D. C. Paine, “Top-Gated Indium–Zinc–Oxide Thin-Film Transistors With In Situ Al2O3/HfO 2 Gate Oxide, IEEE Electron Device Letters, vol. 35, no. 12, pp. 1251-1253, 2014.
[64]Y. Dora, S. Han, D. Klenov, P. J. Hansen, K. S. No, U. K. Mishra, S. Stemmer, and J. S. Speck, “ZrO2 gate dielectrics produced by ultraviolet ozone oxidation for GaN and AlGaN∕GaN transistors, Journal of Vacuum Science & Technology B, vol. 24, pp. 575-581, Feb. 2006.
[65]S. Basu, P. K. Singh, J. J. Wang, and Y. H. Wang, “Liquid-phase deposition of Al2O3 thin films on GaN, Journal of The Electrochemical Society, vol. 154, no. 12. pp. H1041-H1046, Aug. 2007.
[66]L. Li, Y. Xu, Q. Wang, R. Nakamura, Y. Jiang, and J. P. Ao, “Metal-oxide-semiconductor AlGaN/GaN heterostructure field-effect transistors using TiN/AlO stack gate layer deposited by reactive sputtering, Semiconductor Science and Technology, vol. 30, no. 1, pp. 1-6, Jan. 2015.
[67]R. Shao, C. Wang, D. E. McCready, T. C. Droubay, and S. A. Chambers, “Growth and structure of MBE grown TiO2 anatase films with rutile nano-crystallites, Surface Science, vol. 601, no. 6, pp. 1582-1589, Mar. 2007.
[68]V. Mikhelashvili and G. Eisenstein, Effects of annealing conditions on optical and electrical characteristics of titanium dioxide films deposited by electron beam evaporation, Journal of Applied Physics, vol. 89, no. 6, pp. 3256-3269, Mar. 2001.
[69]Y. Z. Yue, Y. Hao, and J. C. Zhang, “AlGaN/GaN MOS-HEMT with Stack Gate HfO2/Al2O3 Structure Grown by Atomic Layer Deposition, Compound Semiconductor Integrated Circuits Symposium, pp. 1-4, Oct. 2008.
[70]H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating, Journal of The Electrochemical Society, vol. 135, no. 8, pp. 2013-2016, 1988.
[71]R. Jerome, P. h. Teyssie, J. J. Pireaux, and J. J. Verbist, “Surface analysis of polymers end-capped with metal carboxylates using X-ray photoelectron spectroscopy, Applied Surface Science, vol. 27, no. 1, pp. 93-105, Oct. 1986.
[72]M. Chun, M.-J. Moon, J. Park, and Y.-C. Kang, “Physical and Chemical Investigation of Substrate Temperature Dependence of Zirconium Oxide Films on Si(100), Bull. Korean Chem. Soc., vol. 30, no. 11, pp. 2729-2734, 2009.
[73]Y. Wang, M. Wang, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. J. Chen, and B. Shen, “High-Performance Normally-Off Al2O3/GaN MOSFET Using a Wet Etching-Based Gate Recess Technique, IEEE Electron Device Lett., vol. 34, no. 11, pp. 1370-1372, Nov. 2013.
[74]R. Vetury, Member, N. Q. Zhang, S. Keller, and U. K. Mishra, “The Impact of Surface States on the DC and RF Characteristics of AlGaN/GaN HFETs, IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 560-566, Mar. 2001.
[75]S. Balandin, V. Morozov, S. Cai, R. Li, K. L. Wang, G. Wijeratne and C. R. Viswanathan, “Low Flicker-Noise GaN/AlGaN Heterostructure Field-Effect Transistors for Microwave Communications, IEEE Trans. Microw. Theory Tech., vol. 47, no. 8, pp. 1413-1417, Aug. 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊