(3.236.214.19) 您好!臺灣時間:2021/05/09 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐易翔
研究生(外文):Yi-HsiangHsu
論文名稱:鈮酸鋰電光與光柵波導元件之設計
論文名稱(外文):Design of Lithium Niobate Electro-Optic and Corrugated Waveguide Devices
指導教授:莊文魁莊文魁引用關係
指導教授(外文):Ricky-Wenkuei Chuang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:80
中文關鍵詞:光波導質子交換長週期光柵相位光柵藍移
外文關鍵詞:optical waveguidesproton exchangelong-period gratingblue shiftphase shift grating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光柵波長濾波器是光波長多工系統中之重要元件,光柵波導可以被當作濾波器從已接收的訊號中選取出特定的訊號,可以藉由波導及光柵的物理參數選取來達成。光柵可以分為週期小於1µm的布拉格光柵(Bragg grating)以及週期長達100µm以上的長週期光柵。過去大部分都是使用週期性光纖光柵具有低損耗、低反射和連接方便等優點,因此長週期光纖光柵為基礎的元件發展很快,可是長週期光纖光柵受限於光纖材料與結構限制,難以實現利用溫度調制、電壓調變等有源的控制,而為了滿足積體化的需求且突破其限制,用波導取代光纖製作長週期光柵,由於LPWG在波導材料選擇上比LPFG豐富許多,故可以提供更多靈活性的設計和製作於光學波導應用上,例如,帶拒濾波器(band rejection filter)、帶通濾波器(band-pass filter)、可調變濾波器(variable-tunable filter)等等。
因此本實驗是製作出典型的長週期波導元件,利用三次質子交換法成功地製作出相位光柵結構在LiNbO3基板上,其中元件週期為Λ=50µm且光柵長度為L=450µm。第一次質子交換法主要是製作出批覆層,其溫度為280℃,時間為4小時,接著進行熱退火處理,溫度為400℃,時間為2小時,主要是要修補晶體的結構。而第二次質子交換法要製作出波導層,其溫度為280℃,時間為4小時。再來是製作出相位光柵(phase grating),方法跟第二次質子交換法皆相同。在後續的量測結果顯示此相位光柵元件光波長抑制對比度(dip contrast)最大可達到14.324dB,半高全寬(FWHM)約為3.88nm,共振波長為1567.04nm,其成功地製作出典型的帶拒濾波器(rejection-band filter)。
接著利用相位移長週期光柵探討溫度對於共振波長的影響,首先在載台下方接上溫度加熱棒,隨著溫度增加時,同時觀測光頻譜分析儀(optical spectrum analyzer, OSA),而隨著溫度的增加(低於50℃),共振波長往較低的波長移動,形成有藍移(blue shift)的現象。

We have successfully fabricated a long-period waveguide gratings (LPWG) on lithium niobate (LiNbO3), of which cladding layer, waveguide core and phase gratings are all produced by proton exchange method.
This device fabricated is a common rejection-band filter with grating pitch and grating length respectively set at 50 and 450µm. The spectral response of LPWGs are then evaluated by using optical spectrum analyzer. The result of TM transmission spectrum shows that a resonant dip with contrast of ~14.324dB occurred at wavelength λ of ~1567.04nm and FWHM of ~3.88nm are obtained. In order to analyze the dependence of resonance wavelength on temperature, a heater is placed under the device sample to control its operating temperature. Consequently, a phenomenon of blue-shift is observed as the temperature increases from RT to 50℃.

中文摘要I
英文摘要III
誌謝XI
目錄XIII
表目錄XVI
圖目錄XVII

第一章 序論 1
1.1 光通訊簡介 1
1.2 光學積體電路 3
1.3 鈮酸鋰晶體的應用 6
1.3.1 週期極化鈮酸鋰 7
1.3.2 光調變器 8
1.4 論文架構 10
參考文獻 11
第二章 鈮酸鋰光波導 13
2.1 鈮酸鋰簡介 13
2.2 質子交換法 15
2.3 熱退火式質子交換 18
2.4 反質子交換法 23
2.5 金屬擴散式波導 23
參考文獻 27
第三章 鈮酸鋰光學元件 32
3.1 鈮酸鋰光學調變器 32
3.1.1 電光效應(electro-optic effect;EO) 32
3.1.2 熱光效應(thermo-optic effect,TO) 39
3.1.3 聲光效應(acousto-optic effect,AO) 42
3.2 長週期波導光柵(Long-period waveguide grating) 44
參考文獻 48
第四章 長週期波導光柵之元件設計與製作 51
4.1 結構設計 51
4.2 元件製作流程 55
4.2.1 基板清洗 59
4.2.2 黃光微影 60
4.2.3 質子交換光波導 61
4.2.4 拋光研磨 63
第五章 長週期波導光柵之元件量測與分析 65
5.1 導論 65
5.2 光場量測 65
5.3 穿透頻譜(Transmission spectrum) 量測分析 68
5.4 長週期光柵濾波器之分析 70
5.5 長週期光柵濾波器之溫度分析 71
第六章 結論與未來進展 76
6.1 結論 76
6.2 未來進展 78
參考文獻 80

第一章
[1]Gregory H. Olsen, “InGaAsP laser diodes, Opt. Eng., vol. 20, pp. 440-445, 1981.
[2]Prentice Hall, and P. Kaiser, “Vibrational mode assignments, Appl. Phys. Lett., vol. 23, pp.45, 1973.
[3]Tetsuo Miya, Toshihito Hosaka, Yukio Terunuma and Tadashi Miyashita, “Ultimate low loss single-mode fibers at 1.55 μm, Electronics Letters, vol. 15, pp.106-108, 1979.
[4]H. Nishihara, M. Haruna, T. Suhara, “Optical Integrated Circuits, McGraw-Hill Book Company, 1989.
[5]R.J. Mears, L. Reekie, S.B. Poole and D. N. Payne, “Neodymium Doped Silica Single-Mode Fibre Lasers, Electron. Lett., vol. 21, No.17,1985.
[6]S.B. Poole, D.N. Payne and M.E. Fermann, “Fabrication of Low-Loss Optical Fibres Containing Rare-Earth Ions, Electron. Lett., vol. 21, No.17,1985.
[7]S.E. Miller, “Integrated optics: An introduction, Bell Syst. Tech. J., vol. 48, pp. 2059-2069, 1969.
[8]J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3 Appl. Phys. Lett.,vol.41, pp.607-608 ,1982
[9]J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric, Physical Review,vol.127,NO.6,pp.1918-1937,1962.
[10]C. Baron, H Cheng, M. C Gupta.,“Domain inversion in LiTaO3 and LiNbO3 by electric field application on chemically patterned crystals, Appl Phys. Lett, vol.68,pp. 481-483, 1996.
[11]M. Yamada, N. Nada, M. Saitoh and K. Watanabe1,“First‐order quasi‐phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second‐harmonic generation ,Appl. Phys. Lett.vol. 62, pp.435 (1993)
[12]Mengruo zhang, Kaixin chen, Wei jin and Kin seng chiang, “Electro-optic mode switch based on lithium-niobate Mach Zehnder interferometer, Applied Optics. vol. 55, No. 16, pp. 4418-4422, June 1 2016

第二章
[1]R. S. Weis and T. K. Gaylord, “Lithium Niobate : Summary of Physical Properties and Crystal Structure ,Appl. Phys. Lett. ,Vol.37, PP. 171-203, 1985.
[2]S. O. Kasap, Optoelectronics and Photonics Principles and Practices, 2nd Edition.
[3]S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate, Opt. Comm., vol. 17, pp. 332-335,1976
[4]http://www.roditi.com/SingleCrystal/LiNbO3/LiNbO3%20Wafers.html.
[5]J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in LiNbO3Appl. Phys. Lett.,vol.41, pp.607-608 ,1982.
[6]K. Yamamoto, Tetsuo, “Characteristics of pyrophosphoric acid PE in LiNbO3, J. Appl. Phys.vol. 70, 11, pp.6663, 1991.
[7]E. Y. B. Pun, K. K. Loi, and P. S. Chung, “Proton-exchanged optical waveguides in Z-cut LiNbO3 using phosphoric acid, IEEE Trans. Lightwave Technol., vol. 11, No. 2, pp. 277-284, Feb. 1993.
[8]E. Y. B. Pun, T. C. Kong, P. S. Chung, and H. P. Chan, “Index profile of proton-exchanged waveguides in LiNbO3 using pyrophosphoric acid, Electron. Lett., vol.26, pp. 81-82, 1990.
[9]A. Loni, R. W. Keys, and R. M. De La Rue, “Characterization of waveguides formed by proton exchange in MgO-doped and Nd:MgO-doped LiNbO3 : A comparison with congruent material, J. Appl. Phys., vol.67, No. 9, pp. 3964–3967,1990
[10]D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton-exchange slab optical waveguides in z-cut LiNbO3, J. Appl. Phys., vol.54, No.11, pp. 6218–6220,1983
[11]A Alcázar deV, J Rams, JM Cabrera, F Agulló-López , “Proton exchange of quasistoichiometric LiNbO3, J. Appl. Phys., vol.82, No. 10, pp. 4752-4757,1997
[12]E. Y. B. Pun, S. A. Zhao, K. K. Loi, and P. S. Chung, “Proton-exchanged LiNbO3 optical waveguides using stearic acid, IEEE Trans. Photon. Technol. Lett., vol. 3, No. 11, pp. 1006-1008, Nov. 1991.
[13]M. Rottschalk, A. Rasch, and W. Karthe, “Electrooptic behavior of proton exchanged LiNbO3 optical waveguides, J. Opt. Comm., vol. 9, pp. 19-23, 1988.
[14]A. Y. Yan, “Index instabilities in proton-exchanged LiNbO3 waveguides, Appl. Phys. Lett., vol. 42, pp. 633-635, 1983.
[15]Y. N. Korkishko, and V. A. Fedorov, “Structural phase diagram of HxLi1-xNbO3 waveguides: the correlation between optical and structural properties, IEEE J. Quantum Electron., vol. 2, pp. 187-196, 1996.
[16]C. E. Rice, J. L. Jackel, and W. L. Brown, “Measurement of the deuterium concentration profile in a deuterium exchanged LiNbO3 crystal, J. Appl. Phys., vol.57, pp. 4437-4440,1985
[17]C RICE, and J JACKEL, “Structural changes with composition and temperature in rhombohedral Li 1-x H x/NbO3 Mater. Res. Bull., vol.19, No.5,pp. 591-597,1984
[18]C. E. Rice, “The structure and properties of Li 1-x H x/NbO3 J. Solid State Chem., vol.64, pp. 188-199,1986.
[19]Yu. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on Z-cut lithium niobate Appl. Opt. ,vol. 35, No. 36, pp. 7056-7060, Dec.1996.
[20]W. Jin, K. S. Chiang, and Q. Liu, “Electro-Optic Long-Period Waveguide Gratings in Lithium Niobate, Optics Express, vol.16, No.25, pp. 20409-20417, Dec. 2008.
[21]J. L. Jackel, and J. J Johnson, “Reverse exchange method for burying proton exchanged waveguides, Electronics Letters, vol. 27, no. 15, pp. 1360- 1361,July 1991.
[22]R. V. Schmidt and I. P. Kaminow, “Metal diffused optical waveguides in LiNbO3, Appl. Phys., Lett. 25, pp458-460 ,1974.
[23]T. Nozawa, K. Noguchi, H. Miyazawa, and K. Kawano, “Water vapor effects on optical characteristics in Ti:LiNbO3 channel waveguides, Appl. Opt., vol.30, pp1085-1089 ,1991.
[24]J. Noda, N. Uchida, S. Saito, T. Saku, and M. Minakada, “Electro-optic amplitude modulation using three-dimensional LiNbO3 waveguide fabricated by TiO2 diffusion, Appl. Phys. Lett., vol.27, pp19-21 ,1975.
[25]W. K. Burns, C. H. Bulmer, and E. J. West, “Application of Li2O compensation techniques to Ti-diffused LiNbO3 planar and channel waveguides, Appl. Phys. Lett.,vol. 33, pp70-72 ,1978.
[26]T. R. Ranganath and S. Wang, “Suppression of Li2O out-diffusion from Ti-diffused LiNbO3 optical waveguides, Appl. Phys. Lett.,vol.30, pp.376-379 ,1977.
[27]S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguide, Appl. Phys. Lett., vol.31, pp.742-744 ,1977.
[28]J. L. Jackel, V. Ramaswamy, and S. P. Lyman, “Elimination of out-diffused surface guiding in titanium-diffused LiNbO3, Appl. Phys. Lett. vol.38, pp.509-511 ,1981.
[29]R. J. Esdaile, “Closed-tube control of out-diffusion during fabrication of optical waveguides in LiNbO3, Appl. Phys .Lett., vol.33, pp.733-734 ,1978.
[30]Y. P. Liao, R. C. Lu, C. H. Yang, and W. S. Wang, “Passive Ni: LiNbO3 polarization splitter at 1.3μm wavelength, Electron. Lett., vol. 32, No. 11, pp. 1003-1005, May 1996.
[31]Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization, IEEE Photon. Technol. Lett., vol. 8, pp. 548-550, Apr.1996
[32] S. FOUCHET, A. CARENCO, C. DAGUET, R. GUGLIELMI, and L. RIVIERE, “Wavelength Dispersion of Ti Induced Refractive Index Change in Limo3 as a Function of Diffusion Parameters, journal of lightwave technology, Vol. LT-5, No. 5,pp. 700 - 708, May 1987.
[33]M. Fukuma and J. Noda, “Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling to a fiber characteristics, Appl. Opt., vol. 19, pp. 591-597, 1980.
[34]J. Ctyroky, M. Hofman, J. Janta, and J. Schrofel, “3-D analysis of LiNbO3: Ti channel waveguides and directional couplers, IEEE J. Quantum Electron., vol. QE-20, pp. 400-409, 1984.
[35]W. K. Bums, P. H. Klein, and E. J. West, “Ti diffusion in Ti: LiNbO3 planar and channel optical waveguides,’’ J. Appl. Phys., vol.50, pp.591-597,1980
[36]J. Noda, M. Fukuma, and S. Saito, “Effect of Mg diffusion on Ti diffused LiNbO3 waveguides, J. Appl. Phys., vol. 49, pp. 3150-3154, 1978.
[37]R. J. Holmes and D. M. Smyth. “Titanium diffusion into LiNbO3 as a function of stoichiometry, J. Appl. Phys., vol. 55, pp. 3531-355,1984.
[38]K. Sugii, M. Fukuma, and H. Iwasaki, “A study on titanium diffusion into LiNbO3 waveguides by electron probe analysis and X-ray diffraction methods, J. Mater. Sci., vol. 13, pp. 523-532, 1978.
[39]J. Vollmer, J. P. Nisius, P. Hertel, and E. Kratzig, “Refractive index profiles of LiNbO3:Ti waveguides, Appl. Phys. A.,vol.32, pp.125-127,1983

第三章
[1]H. Porte, J. P. Goedgebuer, and R. Ferriere, “A LiNbO3 integrated coherence modulator, J. Lightwave Technol., vol. 10, pp.760–766,June 1992.
[2]ROD. C. ALFERNESS, “Waveguide Electrooptic Modulators, IEEE, vol. 30, No.8,pp.1121-1137,August 1982.
[3]D. Y. Chen and J. D. Phillips, “Extraction of electro-optic coefficient in thin-film linear electro-optic Mach-Zehnder interferometers with non-periodic intensity-voltage output characteristics, Opt. Eng,vol.44(3), pp.034601 ,2005.
[4]S. K. Raghuwanshi, Ajay Kumar, and Santosh Kumar, “1×4 Signal Router using three Mach-Zehnder Interferometers, Opt. Eng. vol.52(03),pp.035002 ,2013.
[5]D. S. Smith, and H. D. RICCIUS, “Refractive indices of Lithium Niobate, Opt. Comm., vol. 17, pp. 332-335,1976
[6]Wen-Hung Huang, Chia-Wei Lin, and Way-Seen Wang, “Electrooptical modulator fabricated by gallium diffusion in lithium niobate IEEE Photonics Technology Letters, vol.20, No.13, pp.1172-1174, 2008.
[7]Luigi Moretti, Mario Iodice, Francesco G. Della Corte, “Temperature dependence of the thermo-optic coefficient of lithium niobate from 300 to 515 K in the visible and infrared regions, J. Appl. Phys. ,vol.98, pp.036101 ,2005.
[8]A. M. Al-hetar, A. S. M. Supa’at, A. B. Mohammad, and I. Yulianti, “Crosstalk improvement of a thermo-optic polymer waveguide MZI-MMI switch, Opt. Commun., vol. 281, No. 23, pp. 5764-5767,Dec. 2008.
[9]O. G. RAMER, “Integrated optic electro optic modulator electrode analysis, IEEE J. Quantum Electron., Vol. 18, No. 3, pp.386-92, March 1982.
[10]Ralf Hauffe, and Klaus Petermann, Thermo-Optic Switching, 1st Edtion, Springer, pp. 129–133, 2006.
[11]R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves, Appl. Phys., vol. 7, pp. 314-316, 1965.
[12]R. S. Weis and T. K. Gaylord, “Lithium Niobate: Summary of physical properties and crystal structure, Appl. Phys,.vol.A37, pp.191-203 (1985)
[13]http://www.acoustooptic.com/acousto-optic-principles.html
[14]D. S. Starodubov, V. Grubsky, and J. Feinberg, “All-Fiber Bandpass Filter with adjustable transmission using cladding-mode coupling, IEEE Photon. Technol. Lett., vol. 10, pp. 1590–1592, Nov. 1998.
[15]D. L. Zhang, Y. Zhang, Y. M. Cui, C. H. Chen, and E.Y.B. Pun, “Long period grating in/on planar and channel waveguides: A theory description, Opt. Laser Technol., vol. 39, pp. 1204–1213, Sept. 2007.
[16]K. S. Chiang, C. K. Chow, H. P. Chan, Q. Liu, and K. P. Lor, “Widely tunable polymer long-period waveguide grating with polarisation-insensitive resonance wavelength, Electron. Lett., vol. 40, No.7,pp. 422-424, Apr. 2004.
[17]Q. Liu, K. S. Chiang, K. P. Lor, and C. K. Chow, “Temperature sensitivity of a long-period waveguide grating in a channel waveguide, Appl. Phys. Lett., vol. 86, pp.241115 - 241115-3, June 2005.
[18]Xuewen Shu, and L. Zhang, “Sensitivity Characteristics of Long-Period Fiber Gratings, J. Lightwave Technol, vol. 20, pp. 255-266, Feb. 2002.
[19]M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect, IEEE Photon. Technol. Lett., vol. 14, pp. 361-362, Mar. 2002.
[20]M. N. Ng and K. S. Chiang, “Thermal effects on the transmission spectra of long-period fiber gratings, Opt. Comm., vol. 208, pp. 321-327, Jul. 2002.


第五章
[1]D. L. Zhang, Y. Zhang, Y. M. Cui, C. H. Chen, and E.Y.B. Pun, “Long period grating in/on planar and channel waveguides: A theory description, Opt. Laser Technol., vol. 39, pp. 1204-1213, Sep. 2007.
[2]K. S. Chiang, K. P. Lor, C. K. Chow, H. P. Chan, V. Rastogi, and Y. M. Chu, “Widely Tunable Long-Period Gratings Fabricated in Polymer-Clad Ion-Exchanged Glass Waveguides, IEEE Photon. Technol. Lett., vol. 15, pp. 1094-1096, Aug. 2003.
[3]Wei Jin, Kin Seng Chiang, and Qing Liu, “Thermally tunable lithium-niobate long-period waveguide grating filter fabricated by reactive ion etching, Optics Letters, vol.35,pp. 484-486,2010.
[4]A. Alcazarde, B. Ramiro, J. Rams, B. Alonso, G. Rojo,V. Bermudez, and J. M. Cabrera,“ Temperature effects in proton exchanged LiNbO3 waveguides, Appl. Phys.,vol. B79,pp.845-849,(2004)
第六章
[1]Wei Jin, Kin Seng Chiang, and Qing Liu, “Thermally tunable lithium-niobate long-period waveguide grating filter fabricated by reactive ion etching, Optics Letters, vol.35,pp. 484-486,2010.
[2]Mollier,“Technological Implementation of Bragg Grating Reflectors in Ti:LiNbO3 Waveguides by Proton Exchange,IEEE Photonics Technology Letters, vol. 14, no. 10, 2002.
[3]Min-Suk Kwon and Sang-Yung Shin, “Tunable Polymer Waveguide Notch Filter Using a Thermooptic Long-Period Grating,IEEE Photonics Technology Letters, vol.17, no.1,pp.145-147, 2005.
[4]Wei Jin, Kin Seng Chiang, “Analysis of Lithium Niobate Electrooptic Long-Period Waveguide Gratings, Journal of Lightwave Technology, vol. 28, no. 10, pp.1477-1484,2010



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔