跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 22:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李哲良
研究生(外文):Che-LiangLi
論文名稱:基於影像之視覺伺服應用於循跡控制研究
論文名稱(外文):Study on Image Based Visual Servoing for Contour Following Control
指導教授:鄭銘揚鄭銘揚引用關係
指導教授(外文):Ming-Yang Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:104
中文關鍵詞:基於影像之視覺伺服循跡控制參數式曲線滑動控制深度觀測器
外文關鍵詞:Image Based Visual ServoingContour Following ControlParametric CurveSliding Mode ControDepth Observer
相關次數:
  • 被引用被引用:4
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
循跡控制為加工應用之重要課題。傳統循跡控制需於加工前給予固定之加工軌跡命令,無法隨目標加工物體之特性進行調整,且無法針對目標加工物體之擺放位置誤差進行修正,加工過程較缺乏彈性且容易導致精準度不足。有鑒於此,本論文提出使用基於影像之視覺伺服架構應用於循跡控制,並針對視覺伺服系統之不確定性進行深入探討,以提昇機械手臂末端點之循跡控制效能。本論文採用畢氏速端雲形線作為描述物體輪廓之參數式曲線,並以深度觀測器所估測而得之特徵點深度資訊來計算影像雅可比矩陣,搭配使用高強健性之滑動控制作為視覺伺服控制器,以提升視覺伺服系統之性能。實驗結果顯示由本論文所發展之基於影像之視覺伺服架構確實可對目標加工物體之輪廓進行循跡控制,且所採用之滑動控制器與深度觀測器確實可以改善視覺伺服系統之不確定性以達到提升循跡控制效能之目的。
Contour following control is an important research topic for applications related to machining/manufacturing. Traditional contour following control provides fixed trajectory commands for machining tasks. Since the trajectory commands are determined in advance, they cannot be adjusted based on the characteristic and the position of a target object. In other words, traditional contour following control is lack of flexibility and its machining precision is less accurate. In view of this, this thesis proposes an image based visual servoing scheme for contour following control. In addition, this thesis conducts an in-depth study on the uncertainty issue concerning the visual servoing system so as to improve the performance of contour following control. First, a PH-spline is chosen as the parametric curve to describe the contour of a target object. Second, a depth observer is employed to estimate the depth of the current feature for calculating the image Jacobian matrix. Third, due to its advantages such as highly robust, sliding mode control is adopted as the visual servoing controller in this thesis. Finally, experimental results indicate that the image based visual servoing structure developed in this thesis can successfully perform contour following tasks. Furthermore, the sliding mode controller and the depth observer employed in this thesis can indeed suppress the adverse effects due to the uncertainty in the visual servoing system, so as to improve the performance of contour following tasks.
中文摘要 I
Study on Image Based Visual Servoing for Contour Following Control II
誌謝 X
目錄 XII
表目錄 XV
圖目錄 XVI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 本文架構 3
第二章 視覺伺服架構介紹 5
2.1 基本視覺伺服架構 5
2.2 基於影像之視覺伺服控制 8
2.2.1 影像雅可比矩陣 8
2.2.2 影像雅可比矩陣估測 10
2.2.3 影像雅可比矩陣之維度探討 11
2.3 基於位置之視覺伺服控制 14
2.4 小結 15
第三章 基於視覺伺服架構之循跡控制 17
3.1 基於影像之視覺伺服多迴路控制架構介紹 17
3.1.1 機械手臂控制內迴路 17
3.1.2 視覺外迴路 19
3.2 影像特徵循跡命令產生 20
3.2.1 影像處理 20
3.2.2 畢氏速端雲形線 21
3.2.3 參數式曲線插值器 25
3.3 視覺回授資訊取得 27
第四章 視覺伺服系統之攝影機校正與座標系轉換 30
4.1 攝影機校正 30
4.1.1 攝影機成像原理 30
4.1.2 攝影機模型 32
4.1.3 內部參數 33
4.1.4 外部參數 36
4.2 座標系轉換 37
4.2.1 採用眼對手攝影機組態之座標系轉換 39
4.2.2 採用眼在手攝影機組態之座標系轉換 43
4.3 機械手臂控制架構之奇異點避免 47
第五章 視覺伺服控制器與觀測器設計 50
5.1 滑動控制 50
5.1.1 滑動控制器設計 50
5.1.2 顫動現象 52
5.2 速度暨深度觀測器 54
5.2.1 速度暨深度觀測器設計 55
5.2.2 穩定性分析 59
第六章 實驗設備與實驗成果 63
6.1 實驗設備與設置 63
6.1.1 二軸機械手臂 63
6.1.2 攝影機與鏡頭 64
6.1.3 實驗環境與目標加工物件 65
6.2 實驗方法與結果 66
6.2.1 循跡控制實驗介紹 66
6.2.2 實驗一 - 控制演算法比較 68
6.2.3 實驗二 - 深度觀測器之應用 82
第七章 結論與建議 97
7.1 結論 97
7.2 未來建議 98
參考文獻 99


[1]S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo control, IEEE Trans. Robot. Autom., vol. 12, no. 5, pp. 651-670, Oct. 1996.
[2]F. Chaumette, “Potential problems of stability and convergence in image-based and position-based visual servoing, in The Confluence of Vision and Control. (LNCIS Series). New York, NY, USA: Springer, 1998, pp. 66-78.
[3]E. Malis and F. Chaumette, “2 1/2 D visual servoing with respect to unknown objects through a new estimation scheme of camera displacement, Int. J. Comput. Vision, vol. 37, no. 1, pp. 79-97, Jun. 2000.
[4]F. Chaumette and E. Malis, “2 1/2 D visual servoing: a possible solution to improve image-based and position-based visual servoings, in Proc. IEEE Int. Conf. Robotics and Automation, San Francisco, CA, 2000, pp. 630-635.
[5]E. Malis, F. Chaumette, and S. Boudet, “2½D visual servoing, IEEE Trans. Robot. Autom., vol. 15, no.2, pp. 238-250, Apr. 1999.
[6]P. I. Corke and S. A. Hutchinson, “A new partitioned approach to image-based visual servo control, IEEE Trans. Robot. Autom., vol. 17, no. 4, pp. 507-515, Aug. 2001.
[7]P. I. Corke and S. A. Hutchinson, “A new hybrid image-based visual servo control scheme, in Proc. 39th IEEE Conf. Decision and Control, Sydney, NSW, 2000, pp. 2521-2526.
[8]N. R. Gans and S. A. Hutchinson, “An asymptotically stable switched system visual controller for eye in hand robots, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Las Vegas, NV, 2003, pp. 735-742.
[9]F. Chaumette and S. Hutchinson, “Visual servo control, Part I: Basic approaches, IEEE Robot. Automat. Mag., vol. 13, no. 4, pp. 82-90, Dec. 2006.
[10]F. Chaumette and S. Hutchinson, “Visual servo control, Part II: Advanced approaches, IEEE Robot. Automat. Mag., vol. 14, no. 1, pp. 109-118, Mar. 2007.
[11]M. Y. Kim, K. W. Ko, H. S. Cho, and J. H. Kim, “Visual sensing and recognition of welding environment for intelligent shipyard welding robots, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Takamatsu, 2000, pp. 2159-2165.
[12]S. K. Lee and S. J. Na, “A study on automatic seam tracking in pulsed laser edge welding by using a vision sensor without an auxiliary light source, J. Manufacturing. Syst., vol. 21, no. 4, pp. 302-315, 2002.
[13]P. Sicard and M. D. Levine, “Joint recognition and tracking for robotic arc welding, IEEE Trans. Syst. Man Cybern., vol. 19, no. 4, pp. 714-728, Jul./Aug. 1989.
[14]J. S. Kim, Y. T. Son, H. S. Cho, and K. Koh, “A robust method for vision-based seam tracking in robotic arc welding, in Proc. IEEE Int. Symp. Intelligent Control, Monterey, CA, 1995, pp. 363-368.
[15]D. Xu, L. K. Wang, Z. G. Tu, and M. Tan, “Hybrid visual servoing control for robotic arc welding based on structured light vision, Acta Automatica Sinica, vol. 31, no. 4, pp. 596-605, 2005.
[16]P. I. Corke, “Dynamic issues in robot visual-servo systems, in Proc. Int. Symp. Robotics Research, 1995, pp. 488-498.
[17]P. I. Corke and M. C. Good, “Dynamic effects in visual closed-loop systems, IEEE Trans. Robot. Autom., vol. 12, no. 5, pp. 671-683, Oct. 1996.
[18]Z. Fang, D. Xu, and M. Tan, “A vision-based self-tuning fuzzy controller for fillet weld seam tracking, IEEE/ASME Trans. Mechatronics, vol. 16, no. 3, pp. 540-550, Jun. 2011.
[19]J. K. Kim, D. W. Kim, S. J. Choi, and S. C. Won, “Image-based visual servoing using sliding mode control, in Proc. Int. Joint Conf. SICE-ICASE, Busan, 2006, pp. 4996-5001.
[20]P. Jiang and R. Unbehauen, “Robot visual servoing with iterative learning control, IEEE Trans. Syst. Man Cybern. A., Syst. Humans, vol. 32, no. 2, pp. 281-287, Mar. 2002.
[21]F. Chaumette, S. Boukir, P. Bouthemy, and D. Juvin, “Structure from controlled motion, IEEE Trans. Pattern Anal. Mach. Intell., vol. 18, no. 5, pp. 492-504, May 1996.
[22]L. Matthies, T. Kanade, and R. Szeliski, “Kalman filter-based algorithms for estimating depth from image sequences, Int. J. Comput. Vision, vol. 3, no. 3, pp. 209-238, Sep. 1989.
[23]A. De Luca, G. Oriolo, and P. R. Giordano, “Feature depth observation for image-based visual servoing: Theory and experiments, Int. J. Robotics Research, vol. 27, no. 10, pp. 1093-1116, Oct. 2008.
[24]張維哲,基於視覺伺服之未知物體輪廓循跡控制研究,碩士論文,國立成功大學電機工程學系,2013。
[25]吳如峰,工業用六軸機械手臂之基於影像視覺伺服架構研究,碩士論文,國立成功大學電機工程學系,2015。
[26]林潔君,基於視覺之工業用機械手臂物件夾取研究,碩士論文,國立成功大學電機工程學系,2015。
[27]G. Flandin, F. Chaumette, and E. Marchand, “Eye-in-hand/eye-to-hand cooperation for visual servoing, in Proc. IEEE Int. Conf. Robotics and Automation, San Francisco, CA, 2000, pp. 2741-2746.
[28]T. Yuksel, “IBVS with fuzzy sliding mode for robot manipulators, in Proc. Int. Workshop Recent Advances in Sliding Modes, Istanbul, 2015, pp. 1-6.
[29]Y. Wang, A Visual Servoing Approach to Human-Robot Interactive Object Transfer. BoD-Books on Demand, 2016.
[30]謝尚勳,基於視覺之PH雲形線平面運動軌跡插值器之研究,碩士論文,國立成功大學電機工程學系,2010。
[31]http://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
[32]http://docs.opencv.org/2.4/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
[33]http://www.emgu.com/wiki/index.php/Camera_Calibration
[34]http://www.vision.caltech.edu/bouguetj/calib_doc/
[35]http://210.27.80.89/2006/yaoganyuanliyufangfa/file/wlkc/ch05/ch05.htm
[36]http://www.twword.com/wiki/%E7%85%A7%E7%9B%B8%E6%A9%9F
[37]http://photoblog.hk/wordpress/2887/%E7%9B%B8%E6%A9%9F%E6%A7%8B%E9%80%A0%E5%9F%BA%E6%9C%AC%E6%95%99%E5%AD%B8%EF%BC%9A%E6%9B%9D%E5%85%89%E8%A8%AD%E5%AE%9A
[38]R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. New York, NY: Cambridge Univ. Press, 2004.
[39]蔡弘晉,基於單應性矩陣之三維模型重建法應用於六軸關節型機械手臂,碩士論文,國立成功大學電機工程學系,2014。
[40]K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, “Robot arm kinematics, in Robotics: Control, Sensing, Vision and Intelligence. New York, NY: McGraw-Hill, 1987, ch. 2, pp. 12-81.
[41]M. W. Spong, S. Hutchinson, and M. Vidyasagar, “Rigid motions and homogeneous transformations, in Robot Modeling and Control. Hoboken, NJ: Wiley, 2006, ch. 2, pp. 35-72.
[42]江宗錡,六軸關節型機械手臂之手眼校正研究,碩士論文,國立成功大學電機工程學系,2014。
[43]F. Dornaika and R. Horaud, “Simultaneous robot-world and hand-eye calibration, IEEE Trans. Robot. Autom., vol.14, no. 4, pp. 617-622, Aug. 1998.
[44]Y. Motai and A. Kosaka, “Hand-eye calibration applied to viewpoint selection for robotic vision, IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3731-3741, Oct. 2008.
[45]S. Remy, M. Dhome, J. M. Lavest, and N. Daucher, “Hand-eye calibration, in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Syst., Grenoble, 1997, pp. 1057-1065.
[46]K. Levenberg, “A method for the solution of certain non-linear problems in least squares, Quart. Appl. Math., vol. 2, no. 2, pp. 164-168, Jan. 1944.
[47]D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters, J. Soc. for Ind. & Appl. Math., vol. 11, no. 2, pp. 431-441, 1963.
[48]J. J. Moré, Numerical Analysis. New York, NY: Springer, 1978, pp. 105-116.
[49]E. K. P. Chong and S. H. Zak, An Introduction to Optimization. NewYork, NY: Wiley, 1996.
[50]S. Roweis, “Levenberg-marquardt optimization, Univ. of Toronto, unpublished, 1996.
[51]M. Shah, R. D. Eastman, and T. Hong, “An overview of robot-sensor calibration methods for evaluation of perception systems, in Proc. Workshop Performance Metrics for Intelligent Syst., New York, NY, 2012, pp. 15-20.
[52]S. Chiaverini, B. Siciliano, and O. Egeland, “Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator, IEEE Trans. Control Syst. Technol., vol. 2, no. 2, pp. 123-134, Jun. 1994.
[53]https://en.wikipedia.org/wiki/Singular_value_decomposition
[54]V. I. Utkin, “Sliding mode control design principles and applications to electric drives, IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 23-36, Feb. 1993.
[55]呂杰修,馬達自動化繞線之無感測器式張力控制研究,碩士論文,國立成功大學電機工程學系,2014。
[56]吳緯崚,永磁同步馬達伺服控制迴路之設計與實現,碩士論文,國立成功大學電機工程學系,2015。
[57]J. Y. Hung, W. Gao, and J. C. Hung, “Variable structure control: A survey, IEEE Trans. Ind. Electron., vol. 40, no. 1, pp. 2-22, Feb. 1993.
[58]S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica, vol. 41, no. 11, pp. 1957-1964, Nov. 2005.
[59]J. A. Burton and A. S. I. Zinober, “Continuous approximation of variable structure control, Int. J. Syst. Sci., vol. 17, no. 6, pp. 875-885, 1986.
[60]J. J. Slotine and S. S. Sastry, “Tracking control of nonlinear systems using sliding surfaces with application to robot manipulator, Int. J. Control, vol. 38, no. 2, pp. 931-938, Dec. 1983.
[61]M. L. Tseng and M. S. Chen, “Chattering reduction of sliding mode control by low-pass filtering the control signal, Asian J. Control, vol. 12, no. 3, pp. 392-398, May. 2010.
[62]X. Yu and O. Kaynak, “Sliding-mode control with soft computing: A survey, IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3275-3285, Sep. 2009.
[63]S. Y. Wang, C. M. Hong, C. C. Liu, and W. T. Yang, “Design of a static reactive power compensator using fuzzy sliding mode control, Int. J. Control, vol. 63, no. 2, pp. 393-413, 1996.
[64]Q. P. Ha, Q. H. Nguyen, D. C. Rye, and H. F. Durrant-Whyte, “Fuzzy sliding-mode controllers with applications, IEEE Trans. Ind. Electron., vol. 48, no. 1, pp. 38-46, Feb. 2001.
[65]A. Kawamura, H. Itoh, and K. Sakamoto, “Chattering reduction of disturbance observer based sliding mode control, IEEE Trans. Ind. Appl., vol. 30, no. 2, pp. 456-461, Mar./Apr. 1994.
[66]R. Marino and P. Tomei, Nonlinear Control Design: Geometric, Adaptive, Robust. London, UK: Prentice-Hall, 1995.
[67]H. K. Khalil, Nonlinear Systems, 2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1996.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊