(3.238.235.155) 您好!臺灣時間:2021/05/11 17:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:姚智榮
研究生(外文):Dee-LunYeu
論文名稱:微波介電陶瓷材料(1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3之研發與無線通訊高頻濾波器之應用
論文名稱(外文):Studies on the Dielectric Ceramic (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 and Associtaed Applications on High-Frequency Filters for Wireless Communications
指導教授:李炳鈞
指導教授(外文):Bing-Jing Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:116
中文關鍵詞:微波介電陶瓷材料燒結促進劑帶通濾波器
外文關鍵詞:(1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9–y(Ca0.8Sr0.2)TiO3ZnMoO4CuOmicrowave dielectric ceramicsband-pass filter
相關次數:
  • 被引用被引用:1
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究目標分三部分,第一部份將引進低損耗的介電材料(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9,為期望τ_f=0,添加具有正值共振頻率溫度漂移係數的材料(Ca0.8Sr0.2)TiO3(+991 ppm/℃),我們經由實驗得知微波介電陶瓷材料0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3在燒結溫度1375℃時,持溫4小時,擁有最佳微波特性: τ_f=-4.67 ppm/℃、ε_r=29.21、Q×f =317000GHz(at8.1GHz)。
第二部分使用第一部分所得之結果分別添加燒結促進劑ZnMoO4與CuO探討液相對微波特性的影響。由實驗結果得知添加0.5wt%的ZnMoO4可有效降低燒結溫度至1300℃(下降約75℃)。在燒結溫度1300℃持溫4小時下可得到最佳的可得最佳微波特性:τ_f=0ppm/℃、ε_r=30.8、Q×f =156000GHz(at7.59GHz)。而添加0.5wt%的CuO可有效降低燒結溫度至1325℃。(下降約50℃)。在燒結溫度1325℃持溫4小時下可得到最佳微波特性:τ_f=-2.28ppm/℃、ε_r=31.1、Q×f =289000GHz(at7.61GHz)。
最後,設計及製作一操作在2.4GHz的微帶線帶通濾波器,並實作於FR-4、Al2O3、自製基板0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3上,0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO。由量測的結果得知,利用高介電係數及低損耗的材料做為電路基板時,能達到縮小面積以及具有更好的濾波特性。

The microwave dielectric properties and microstructures of (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9 –y(Ca0.8Sr0.2)TiO3 prepared by using the conventional solid-state were analyzed. The best result was ε_r=29.21, Q×f=317,000 at 7.61GHz, τ_f=-4.67ppm/℃ for y = 0.7 sintered at 1375℃ for 4 hr. Sintering aids were added to the system of the materials and the result showed reduction on the sintering temperature could be obtained by 75℃ and 50℃ for 0.5wt% ZnMoO4 and 0.5wt% CuO, respectively. Finally, 2.4GHz band-pass filters were fabricated on the substrates of the proposed materials. The measured filter properties were close to simulated results and measured insertion loss was 0.94dB, a great advantage over the substrates of FR4 and Al2O3.
摘要 I
Extended Abstract III
誌謝 X
目錄 XI
表目錄 XIV
圖目錄 XV
第一章 緒論 1
第二章 介電陶瓷材料原理 5
2-1剛玉結構 5
2-2 介電陶瓷材料之燒結原理 6
2-2-1材料燒結種類 7
2-2-2材料燒結之擴散機制 9
2-2-3 材料燒結之過程 9
2-3介電陶瓷材料之微波特性 10
2-3-1 介電係數 10
2-3-2 品質因數 13
2-3-3 共振頻率之溫度漂移係數 16
2-4介電共振器(Dielectric Resonator:DR)原理 18
2-5 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9與(Ca0.8Sr0.2)TiO3 22
第三章 微帶線及濾波器原理 26
3-1 濾波器原理 26
3-1-1濾波器簡介 26
3-1-2濾波器之種類及其頻率響應 26
3-2 微帶線原理 30
3-2-1微帶傳輸線簡介 30
3-2-2微帶線的傳輸模態 30
3-2-3微帶線的損失 31
3-3 λ/2開路微帶線共振器 32
3-4 U型微帶線共振器 35
3-4-1 U型微帶線共振器 35
3-4-2 採用Source-load Coupling產生傳輸零點 37
第四章 實驗程序與量測方法 38
4-1起始原料 38
4-2 介電陶瓷材料之製備 40
4-2-1粉末製作 40
4-2-2 陶瓷塊體製作 41
4-3 介電陶瓷塊體特性分析與量測 42
4-3-1 XRD相鑑定 42
4-3-2 掃描式電子顯微鏡(SEM) 44
4-3-3 密度之量測 45
4-3-4 微波特性之量測 46
4-3-5 共振頻率溫度係數之測量 53
4-4 濾波器之製作與量測 54
4-4-1濾波器製作 54
4-4-2濾波器量測 55
4-5進行步驟及研究流程規劃 57
4-5-1主相與混相粉末製備進行步驟 57
4-5-2實驗進行規劃 59
4-5-3研究流程規劃 62
第五章 實驗結果與討論 63
5-1 (1-y) (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 63
5-1-1( 1-y) (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3之共振頻率溫度漂移係數分析 63
5-1-2( 1-y) (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3之微波特性分析 65
5-1-3( 1-y) (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3之密度量測 70
5-1-4( 1-y) (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3之SEM微結構分析 74
5-1-5( 1-y) (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3之XRD相鑑定分析 75
5-1-6( 1-y) (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3總結 78
5-2探討0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3添加燒結促進劑ZnMoO4的影響 79
5-2-1 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+ZnMoO4之共振頻率溫度漂移係數分析 80
5-2-2 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+ZnMoO4之微波特性分析 82
5-2-3 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+ZnMoO4之密度量測 85
5-2-4 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+ZnMoO4之SEM微結構分析 86
5-2-5 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+ZnMoO4之XRD相鑑定分析 88
5-2-6 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+ZnMoO4總結 90
5-3探討0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3添加燒結促進劑CuO 91
5-3-1 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO之共振頻率溫度漂移係數分析 91
5-3-2 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO之微波特性分析 93
5-3-3 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO之密度量測 97
5-3-4 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO之SEM微結構分析 99
5-3-5 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO之XRD相鑑定分析 100
5-2-6 0.3 (Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO總結 102
5-4濾波器模擬與實作 103
5-4-1 FR-4模擬與實作量測結果 103
5-4-2 Al2O3模擬與實作量測結果 105
5-4-3 0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3模擬與實作量測結果 106
5-4-4 0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3+CuO模擬與實作量測結果 109
第六章 結論 112
參考論文 114


表2-1 Mg4Ta2O9 、Co4Ta2O9、 Mg4Nb2O9之XRD繞射角度 23
表2-2 (Ca0.75Sr0.25)TiO3之XRD繞射角 24
表2-3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9之XRD繞射角 25

表4-1起始粉末的純度和品牌 38
表4-2 X光繞射分析儀操作條件 43
表4-3 研究流程規劃表 62

表5-1 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3對應實驗y值之理論密度 72
表5-2 FR-4基板濾波器之電路參數(mm) 103
表5-3 FR-4基板濾波器之模擬與實作特性比較 104
表5-4 Al2O3基板濾波器之電路參數(mm) 105
表5-5 Al2O3基板濾波器之模擬與實作特性比較 106
表5-6 0.3MCTN0.7CS基板濾波器之電路參數(mm) 107
表5-7 0.3MCTN0.7CS基板濾波器之模擬與實作特性比較 107
表5-8 0.3MCTN0.7CS+CuO基板濾波器之電路參數(mm) 109
表5-9 0.3MCTN0.7CS+CuO基板濾波器之模擬與實作特性比較 110
表5-10各基板濾波器之模擬與量測 111

圖2-1剛玉(Al2O3)結晶構造圖 5
圖2-2 corundum型結晶構造圖 5
圖2-3 Mg4Ta2O9的晶體結構 6
圖2-4空間極化示意圖 10
圖2-5電偶極極化示意圖 11
圖2-6離子極化示意圖 11
圖2-7電子極化示意圖 12
圖2-8極化頻率響應圖 13
圖2-9介電共振器頻率響應圖 14
圖2-10電磁波由介質1(ε1μ1)入射到介質2(ε2μ2) 18
圖2-11電磁波之在介質二中發生全反射 19
圖2-12圓柱型DR中各種mode之外部與內部功率傳輸比 20
圖2-13圓柱型DR電磁場分佈 21
圖2-14 PDF Card #00-038-1458:Mg4Ta2O9之XRD繞射圖 22
圖2-15 PDF Card # 00-038-1461:Co4Ta2O9之XRD繞射圖 22
圖2-16 PDF Card #00-038- 00-038-1459:Mg4Nb2O9之XRD繞射圖 23
圖2-17 PDFCard #01-070-8504:(Ca0.75Sr0.25)TiO3之XRD繞射圖 24

圖3-1射頻通訊系統前端架構 26
圖3-2各頻帶濾波器示意圖 28
圖3-3三種濾波器的低通原型圖 29
圖3-4微帶線之外觀圖 30
圖3-5微帶線之電場分佈圖 31
圖3-6二分之一波長微帶線諧振器的傳輸線示意圖 33
圖3-7平行耦合線濾波器 33
圖3-8 U型諧振器與U型濾波器 33
圖3-9正方形開迴路諧振器與開迴路諧振器濾波器 34
圖3-10折疊微帶線形成U型共振器 35
圖3-11直微帶線共振器的等效電路示意圖 35
圖3-12 U型共振器的電路布局圖 36
圖3-13 U型共振器的電路布局圖 36
圖3-14採用Source-load Coupling之U型共振器電路布局圖 37
圖3-15採用Source-load Coupling之U型共振器頻率響應模擬圖 37

圖4-1介電材料製作與量測流程圖 40
圖4-2燒結流程之持溫時間與溫度圖 42
圖4-3布拉格繞射示意圖 44
圖4-4量測模具 47
圖4-5探針前端之線圈耦合方式 48
圖4-6判別p值方法 49
圖4-7 DR量測示意圖 52
圖4-8濾波器之量測示意圖 55
圖4-9主相粉末製造流程圖 57
圖4-10混相粉末製造流程圖 58
圖4-11濾波器之電路佈局圖 61

圖5-1 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 ( y=0、0.65、0.7、0.75、0.8)之燒結溫度與溫度漂移係數關係圖 63
圖5-2 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 不同混合比例y(0、0.65、0.7、0.75、0.8)與共振頻率溫度漂移係數之關係圖 64
圖5-3 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 y(0、0.65、0.7、0.75、0.8)之燒結溫度與εr關係圖 65
圖5-4 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3不同混合比例y(0、0.65、0.7、0.75、0.8)與εr關係圖 66
圖5-5 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3不同混合比例y(0、0.65、0.7、0.75、0.8)與莫耳體積比之關係圖 66
圖5-6 莫耳體積比與與εr關係圖 67
圖5-7 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 y(0、0.65、0.7、0.75、0.8)之燒結溫度與Q×f關係圖 68
圖5-8 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3不同混合比例y(0、0.65、0.7、0.75、0.8)與Q×f關係圖 69
圖5-9(1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 (0、0.65、0.7、0.75、0.8)燒結溫度與視密度關係圖 70
圖5-10 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3不同混合比例y(0、0.65、0.7、0.75、0.8)與視密度關係圖 71
圖5-11 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3不同混合比例y(0、0.65、0.7、0.75、0.8)與理論密度關係圖 72
圖5-12 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3 (0、0.65、0.7、0.75、0.8)燒結溫度與相對密度關係圖 73
圖5-13 0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3不同燒結溫度點持穩4小時之SEM圖 75
圖5-14 0.3(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-0.7(Ca0.8Sr0.2)TiO3在不同燒結溫度點之XRD相鑑定繞射圖 76
圖5-15 (1-y)(Mg0.95Co0.05)4(Ta0.95Nb0.05)2O9-y(Ca0.8Sr0.2)TiO3在燒結溫度1375°C持穩4小時之XRD相鑑定繞射圖(y=0.65、0.7、0.75、0.8) 77
圖5-16 0.3MCTN0.7CS添加x wt%的ZnMoO4(x=0、0.5、1、2)之燒結溫度與溫度漂移係數關係圖 80
圖5-17 0.3MCTN0.7CS添加x wt%的ZnMoO4(x=0、0.5、1、2) 之不同添加量x與共振頻率溫度漂移係數之關係圖 81
圖5-18 0.3MCTN0.7CS添加x wt%的ZnMoO4(x=0、0.5、1、2)之燒結溫度與εr關係圖 82
圖5-19 0.3MCTN0.7CS添加x wt%的ZnMoO4(x=0、0.5、1、2) 之不同添加量x與εr關係圖 83
圖5-20 0.3MCTN0.7CS添加x wt%的ZnMoO4(x=0、0.5、1、2)之燒結溫度與Q×f關係圖 84
圖5-21 0.3MCTN0.7CS添加x wt%的ZnMoO4(x=0、0.5、1、2) 之不同添加量x與Q×f關係圖 84
圖5-22 0.3MCTN0.7CS添加x wt%的ZnMoO4(x=0、0.5、1、2)之燒結溫度與視密度關係圖 85
圖5-23 0.3MCTN0.7CS添加x wt%的ZnMoO4(x=0、0.5、1、2)之不同混合比例與視密度關係圖 86
圖5-24 0.3MCTN0.7CS添加0.5wt% ZnMoO4之燒結溫度持穩4小時之SEM圖 87
圖5-25 0.3MCTN0.7CS +0.5wt%的燒結促進劑ZnMoO4之XRD相鑑定繞射圖 89
圖5-26 0.3MCTN0.7CS添加x wt%的CuO (x=0、0.5、1、2)之燒結溫度與溫度漂移係數關係圖 91
圖5-27 0.3MCTN0.7CS添加x wt%的CuO (x=0、0.5、1、2) 之不同添加量x與共振頻率溫度漂移係數之關係圖 92
圖5-28 0.3MCTN0.7CS添加x wt%的CuO (x=0、0.5、1、2)之燒結溫度與εr關係圖 93
圖5-29 0.3MCTN0.7CS添加x wt%的CuO(x=0、0.5、1、2) 之不同添加量x與εr關係圖 94
圖5-30 0.3MCTN0.7CS添加x wt%的CuO (x=0、0.5、1、2)之燒結溫度與Q×f關係圖 95
圖5-31添加x wt%的ZnMoO4(x=0、0.5、1、2) 之不同添加量x與Q×f關係圖 95
圖5-32 0.3MCTN0.7CS添加x wt%的CuO (x=0、0.5、1、2)之燒結溫度與視密度關係圖 97
圖5-33 0.3MCTN0.7CS添加x wt%的CuO (x=0、0.5、1、2) 之不同混合比例與視密度關係圖 98
圖5-34 0.3MCTN0.7CS添加0.5wt% CuO之燒結溫度持穩4小時之SEM圖 99
圖5-35 0.3MCTN0.7CS +0.5wt%的燒結促進劑CuO之XRD相鑑定繞射圖 101
圖5-36 FR-4基板濾波器頻率響應圖 103
圖5-37 Al2O3基板濾波器頻率響應圖 105
圖5-38 0.3MCTN0.7CS基板濾波器頻率響應圖 107
圖5-39 0.3MCTN0.7CS+CuO基板濾波器頻率響應圖 109
圖5-40 濾波器實作圖 111


[1]H. Ogawa, A. Kan, S. Ishihara, and Y. Higashida, Crystal structure of corundum type Mg4(Nb2–xTax)O9 microwave dielectric ceramics with low dielectric loss, Journal of the European Ceramic Society, vol. 23, pp. 2485-2488, 2003.
[2]M. T. Sebastian, Dielectric materials for wireless communication: Elsevier Science, 2008.
[3]Joe_Taiwan. (2010, 印刷電路板與防電磁干擾設計 Printed Circuit Board (PCB) & EMC. Available: http://ssnt-tech.com/forum_det.php?action=view&id=79
[4]李洵穎. (2009, FR-4銅箔基板. Available: http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?CnlID=10&id=0000120967_TLRL9IK059IQB884HIKRY
[5]yangzhaowu. (2012, LED封裝領域用陶瓷基板現狀與發展簡要分析. Available: http://www.ledinside.com.tw/knowledge/20120514-21055.html
[6]M. T. Sebastian, Dielectric materials for wireless communication, ed, 2008, pp. 1-3.
[7]xshanly. (2008, 微波频率合成技术-下. Available: http://wenku.baidu.com/view/ea9be84bcf84b9d528ea7a86.html
[8]K. Wakino, K. Minai and H. Tamura, Microwave Characteristics of (Zr, Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators, Journal of the American Ceramic Society, vol. 67, pp. 278-281, 1984.
[9]C.-L. Huang and J.-Y. Chen, High-Q Microwave Dielectrics in the (Mg1−xCox)2TiO4 Ceramics, Journal of the American Ceramic Society, vol. 92, pp. 379-383, 2009.
[10]L. Bing-Jing, C. Jhih-Yong, H. Guan-Sian, J. Chang-Yang, and H. Cheng-Liang, Dielectric properties of B2O3-doped 0.92(Mg0.95Co0.05)2TiO4-0.08(Ca0.8Sr0.2)TiO3 ceramics for microwave applications, Journal of alloys and compounds vol. vol. 505, pp. pp. 291-296, 2010
[11]谢志鹏 and 刘冠伟, 通过浸渗坯体引入烧结助剂制备半透明氧化铝陶瓷的方法, CN102093037 B, 2013.
[12]D. C. Sun, S. Senz and D. Hesse, Crystallography, microstructure and morphology of Mg4Nb2O9/MgO and Mg4Ta2O9/MgO interfaces formed by topotaxial solid state reactions, J. Eur. Ceram. Soc., vol. 26, pp. 3181-3190, 2006.
[13]B.-J. Li, S.-Y. Wang, C.-Y. Chiu, S.-H. Lin, and Y.-B. Chen, Dielectric properties and mixture behavior of y(Mg0.95Co0.05)4Ta2O9-(1-y)CaTiO3 ceramic system at microwave frequency, Journal of Alloys and Compounds, vol. 661, pp. 357-362, 2016.
[14]S. Cong-Zhi and L. Bing-Jing, Study on Microwave Dielectric Material of (1-y)(Mg0.95Ni0.05)4(Nb1-xTax)2O9-y(Ca0.8Sr0.2)TiO3 and Application for Wireless Communication, 2014.
[15]T.-C. Hsieh and B.-J. Li, Improvement of Corundum-structured Dielectric Ceramic Material Mg4Ta2O9 with Mg2+ substituted by different doping ion and study, 2015.
[16]P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles, and D. S. Cannell, Structure-microwave property in(SrxCa(1-x))n+1TinO3n+1, Journal of the European Ceramic Society vol. 21, pp. 1723-1726, 2001.
[17]J. Guo, D. Zhou, H. Wang, and X. Yao, Microwave dielectric properties of (1 − x)ZnMoO4–xTiO2 composite ceramics, Journal of Alloys and Compounds, vol. 509, pp. 5863-5865, 2011.
[18]D. Li, H. Wang, Z. He, Z. Xiao, R. Lei, and S. Xu, Effect of CuO addition on the sintering temperature and microwave dielectric properties of CaSiO3–Al2O3 ceramics, Progress in Natural Science: Materials International, vol. 24, pp. 274-279, 2014.
[19]S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina, Journal of the American Ceramic Society, vol. 80, pp. 1885-1888, 1997.
[20]W. J. Huppmann. and G. Petzow, The Elementary Mechanisms of Liquid Sintering, 1979.
[21]K. S. Hwang, Rensselaer Ploytechnic in Troy, 1984.
[22]R. M. German, Liquid Phase Sintering. New York: Plenum Press, 1985.
[23]J. H. Jean and C. H. Lin, Coarsening of tungsten particles in W-Ni-Fe alloys, Journal of Materials Science, vol. 24, pp. 500-504, 1989.
[24]W. F. Smith, 材料科學與工程: 高立出版, 1994.
[25]魏炯權, 電子材料工程: 全華, 2001.
[26]陳皇鈞, 陶瓷材料概論 vol. 76: 曉園出版社有限公司, 1987.
[27]R. D. Richtmyer, Dielectric resonators, J. Appl. Phys, vol. 10, pp. 391-398, 1939.
[28]D. M. Pozar, Microwave engineering, 2nd ed.: New York: John Wily & Sons, Inc, 1998.
[29]D. Kajfez. A. W. Glisson and J. James, Computed Modal Field Distributions for Isolated Dielectric Resonators, IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES,, vol. 32[12], pp. 1609-1616, 1984.
[30]D. Kajfez, Basic Principle Give Understanding of Dielectric Waveguides and Resonators, Microwave System News, vol. 13, pp. 152-161, 1983.
[31]D. Kajfez and P. Guillon, Dielectric Resonators. New York: Artech House, 1989.
[32]A. Kan, H. Ogawa, A. Yokoi, and Y. Nakamura, Crystal structural refinement of corundum-structured A4M2O9 (A = Co and Mg, M = Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction, Journal of the European Ceramic Society, vol. 27, pp. 2977-2981, 2007.
[33]Z. Fu, P. Liu, J. Ma, X. Zhao, and H. Zhang, Microwave dielectric properties of low-fired (1−x)Mg2Si0.9V0.1O4–xCa0.8Sr0.2TiO3 composite ceramics, Materials Chemistry and Physics, vol. 170, pp. 118-122, 2016.
[34]P. E. A. Randall L Geiger, Noel R Strader, VLSI design techniques for analog and digital circuits vol. 90. New York: McGraw-Hill, 1990.
[35]R. A. Pucel, D. J. Masse and C. P. Hartwig, Losses in microstrip, Microwave Theory and Techniques, IEEE Transactions on MICROWAVE THEORY AND TECHNIQUES, vol. 16, pp. 342-350, 1968.
[36]E. J. Denlinger, Losses of microstrip lines, IEEE Transactions on Microwave Theory Techniques, vol. 28, pp. 513-522, 1980.
[37]G. L. Matthaei, E. M. T. Jones and L. Young, Microwave filters, impedance-matching networks, and coupling structures: Artech House, 1980.
[38]Z. Xiao-Chuan, Y. Zhi-Yuan and X. Jun, Design of Microstrip Dual-Mode Filters Based on Source-Load Coupling, Microwave and Wireless Components Letters, IEEE, vol. vol. 18, pp. 677-679, 2008.
[39]Z. Mingqi, T. Xiaohong and X. Fei, Miniature Microstrip Bandpass Filter Using Resonator-Embedded Dual-Mode Resonator Based on Source-Load Coupling, Microwave and Wireless Components Letters, IEEE, vol. 20, pp. 139-141, 2010.
[40]B. W. Hakki and P. D. Coleman, A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range, IRE Transactions on Microwave Theory and Techniques, vol. 8, pp. 402-410, 1960.
[41]O. V. Karpova, On an absolute method of measurement of dielectric properties of a solid using a II-shaped resonator vol. 1: Soviet Physics, 1959.
[42]W. E. Courtney, Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators, IEEE Transactions on MICROWAVE THEORY AND TECHNIQUES, vol. 18, pp. 476-485, 1970.
[43]C. Shuh-Han, Measurements of Microwave Conductivity and Dielectric Constant by the Cavity Perturbation Method and Their Errors, IEEE Transactions on MICROWAVE THEORY AND TECHNIQUES, vol. 33, pp. 519-526, 1985.
[44]Y. Kobayashi and M. Katoh, Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method, IEEE Transactions on MICROWAVE THEORY AND TECHNIQUES, vol. 33, pp. 586-592, 1985.
[45]P. Wheless and D. Kajfez, The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators, in Microwave Symposium Digest, 1985 IEEE MTT-S International, 1985, pp. 473-476.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔