(3.236.118.225) 您好!臺灣時間:2021/05/14 11:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳幸榆
研究生(外文):Hsing-YuChen
論文名稱:低溫燒結陶瓷材料Ba(Ni1-xMgx)2(VO4)2(x = 0–0.8)在微波頻段之研究與應用
論文名稱(外文):Study and Applications of Low-Firing Ceramics Ba(Ni1-xMgx)2(VO4)2 (x = 0–0.8) at Microwave Frequencies
指導教授:黃正亮
指導教授(外文):Cheng-Liang Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:109
中文關鍵詞:微波介電材料濾波器
外文關鍵詞:microwave dielectric ceramicsbandpass filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要分別介紹兩大部分,第一部分將介紹新開發的微波介電材料;第二部分將設計一濾波器,模擬於不同基板上的微波特性。
第一部分首先介紹BaNi2(VO4)2陶瓷之微波介電特性,接著使用與Ni2+ (0.69Å)離子半徑相近的Mg2+(0.72Å)對BaNi2(VO4)2中的Ni2+做取代,並探討Ba(Ni1-xMgx) 2(VO4)2 (x = 0–0.8)的微波介電特性與材料微結構。由實驗得知,當取代比例為x = 0.6,且燒結溫度在990oC時有良好的微波介電特性,εr ~11.2, Q×f~51,400 GHz, τf ~ –52.8 ppm/°C。
第二部分將設計一操作約在2.45GHz的濾波器。主體架構為U型共振器,為了改善頻率響應,採用Source-Load coupling的耦合方式,使其能產生一傳輸零點,以及在U型共振器內部加入一開路殘段以期能有短路的特性。最後,我們將電路模擬在FR4、Al2O3、Ba(Ni0.4Mg0.6)2(VO4)2基板上,並分析其頻率響應。
In order to obtain a novel low-temperature ceramics, the microwave dielectric properties of Ba(Ni1-xMgx)2(VO4)2 (x = 0 – 0.8) ceramics had been investigated. The experimental results show that BaNi2(VO4)2 has the best properties at sintering temperature 930℃ for 4 hours, with ε_r~9.0, Q×f~ 18,300 GHz, and τf ~-66.2 ppm/℃. Then the Ni2+ from the BaNi2(VO4)2 had been substituted by Mg2+, at x = 0.6, where the ε_r~11.2, Q×f~51,400, τf ~-52.8 ppm/℃ at the sintering temperature of 990℃ for 4 hours. Also, we designed a bandpass filter on FR4、Al2O3、Ba(Ni0.6Mg0.4)2(VO4)2 substrates. According to the results of simulation, the performance of the filter was improved by using low-loss dielectric ceramics as the substrate.
摘要 I
Extended Abstract II
致謝 VI
目錄 VII
圖目錄 XI
表目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 材料的燒結 3
2-1-1 材料燒結之擴散方式 3
2-1-2 材料燒結之過程 4
2-1-3 燒結的種類 5
2-2 介電共振器原理(Dielectric resonator:DR) 7
2-3 微波介電材料之特性 10
2-3-1 介電係數(Dielectric Constant, εr) 10
2-3-2 品質因數(Quality Factor, Q) 13
2-3-3 共振頻率溫度飄移係數(τf) 16
2-4六方晶系(Hexagonal) 17
2-5 拉曼光譜與分子振動模態簡介 18
2-5-1 拉曼光譜(Raman spectra) 18
2-5-2 分子的振動模態(Vibrational modes) 18
2-6 低溫共燒陶瓷技術(Low temperature co-fired ceramics, LTCC) 19
第三章 微帶線及濾波器原理 20
3-1 濾波器原理 20
3-1-1濾波器的簡介 20
3-1-2濾波器之種類及其頻率響應 21
3-2 微帶線原理 24
3-2-1 微帶傳輸線的簡介 24
3-2-2 微帶線的傳輸模態 24
3-2-3 微帶線各項參數公式計算及考量 25
3-2-4 微帶線的不連續效應 28
3-2-5 微帶線的損失 34
3-3 微帶線諧振器種類 36
3-3-1 λ/4短路微帶線共振器 37
3-3-2 λ/2開路微帶線共振器 38
3-4 共振器間的耦合形式 40
3-4-1 電場耦合(Electric coupling) 40
3-4-2 磁場耦合(Magnetic coupling) 43
3-4-3 混和耦合(Mixed coupling) 46
3-5濾波器設計步驟 49
3-5-1 U型微帶線共振器 49
3-5-2 Source-Load Coupling 50
3-5-3 開路殘段(Oen stub) 51
第四章 實驗程序與量測方法 52
4-1 微波介電材料的製備 52
4-1-1 粉末的製備與球磨 53
4-1-2 粉末的煆燒 53
4-1-3 加入黏劑、過篩 53
4-1-4 壓模成型、去黏劑及燒結 54
4-2 微波介電材料的量測與分析 55
4-2-1 密度測量 55
4-2-2 X-Ray分析 55
4-2-3 SEM分析 56
4-2-4 拉曼光譜分析 56
4-2-5 介電特性量測與分析 57
4-2-6 共振頻率溫度飄移係數之量測 63
第五章 實驗結果與討論 64
5-1 BaNi2(VO4)2之微波介電特性 64
5-1-1 BaNi2(VO4)2之XRD相組成分析 65
5-1-2 BaNi2(VO4)2之拉曼光譜分佈 67
5-1-3 BaNi2(VO4)2之SEM分析 68
5-1-4 BaNi2(VO4)2的拉曼波峰半高寬(FWHM)分析 69
5-1-5 BaNi2(VO4)2之相對密度分析結果 70
5-1-6 BaNi2(VO4)2之介電係數(εr)分析結果 71
5-1-7 BaNi2(VO4)2之品質因數與共振頻率乘積(Q×f)分析結果 72
5-1-8 BaNi2(VO4)2之共振頻率溫度飄移係數(τf)分析結果 73
5-2 Ba(Ni1-xMgx)2(VO4)2 (x = 0–1)之微波介電特性 74
5-2-1 Ba(Ni1-xMgx)2(VO4)2 (x = 0–1)之XRD相組成分析 75
5-2-2 Ba(Ni1-xMgx)2(VO4)2 (x = 0–1)之拉曼光譜分佈 76
5-2-3 Ba(Ni1-xMgx)2(VO4)2 (x = 0–1)之SEM分析 77
5-2-4 Ba(Ni1-xMgx)2(VO4)2 (x = 0–1)之相對密度分析結果 78
5-2-5 Ba(Ni1-xMgx)2(VO4)2 (x = 0–1)之介電係數分析結果 79
5-2-6 Ba(Ni1-xMgx)2(VO4)2 (x = 0–1)之品質因數與共振頻率乘積分析結果 80
5-2-7 Ba(Ni1-xMgx)2(VO4)2 (x = 0–1)之共振頻率溫度飄移係數分析結果 81
5-3 濾波器的模擬 83
5-3-1 使用玻璃纖維基板(FR4)之模擬結果 84
5-3-2 使用Al2O3基板之模擬結果 85
5-3-3 使用Ba(Ni0.4Mg0.6)2(VO4)2自製基板之模擬結果 86
第六章 結論 88
參考文獻 89
[1] W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書,(2005).
[2] J. W. Cahn and R. B. Heady, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jaggered Particles, J. Am. Cearm. Soc., 53 [7] 406-409 (1970)
[3] W. J . Huppmann and G . Petzow, “Sintering Processes,’’Plenum Press, (1979).
[4] R. M. German, “Liquid phase Sintering, Plenum Press, (1985).
[5] J. H. Jean and C. H. Lin, “Coarsening of Tungsten Particles in W-Ni-Fe Alloys, J. Mater. Sci., 24 [2] 500-504 (1989)
[6] D. M. Pozar, Microwave engineering, Addison-Wesley (1998).
[7] D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators, Microwave SysTFm News., 13, 152–161 (1983).
[8] D. Kajfez, A. W. Glisson, and J. James, “Computed model field distributions for isolated dielectric resonators, IEEE Trans. Microwave Theory Tech., 32 [12]
1609–1616 (1984).
[9] 張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, (1998).
[10] 鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期, (2001).
[11] W. D. Kingery, H. K. Bowen, D. R. Uhlmann, 陳皇鈞(譯), “陶瓷材料概論, 曉園出版社, (1988).
[12] 余樹楨,樹晶體之結構與性質,體渤海堂文化公司, (2007).
[13] R. Umemura, H. Ogawa, H. Ohsato, A. Kan, and A. Yokoi, “Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic, J. Eur. Ceram. Soc., 25 2865-2870 (2005).
[14] M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, J. H. Paik, and B. H. Choi ,“Formation and microwave dielectric properties of the Mg2V2O7 ceramics, J.Am. Soc., 92 [7] 1621–1624 (2009).
[15] Liang Fangn,FeiXiang,CongxueSu,HuiZhang, “A novel low firing microwave dielectric ceramic NaCa2Mg2V3O12,Ceram.Int.39 [8] 9779–9783(2013).
[16] Congxue Su, Liang Fang, Zhenhai Wei, Xiaojun Kuang, Hui Zhang, “ LiCa3ZnV3O12: a novel low-firing, highQ microwave dielectric ceramic, Ceram. Int.,40 [3] 5015–5018 (2014).
[17] Liang Fang, CongxueSu, HuanfuZhou, ZhenhaiWei, HuiZhang, “ Novel low-firing microwave dielectric ceramic LiCa3MgV3O12 with low dielectric loss, J.Am.Ceram.Soc.96 [3] 688–690 (2013).
[18] Mi-Ri Joung, Jin-SeongKim, Myung-EunSong, SahnNahm, “ Low- temperature sintering and microwave dielectric properties of the Li2CO3-Added Ba2V2O7 ceramics, J.Am.Ceram.Soc.,93 [4] 934–936 (2010).
[19] Liang Fangn, ZhenhaiWei, CongxueSu, FeiXiang, HuiZhang “Novel low-firing microwave dielectric ceramics : BaMV2O7 (M = Mg, Zn) , Ceram. Int.,40 [10] 16835–16839 (2014).
[20] E. K. Suresh, A. N. Unnimaya, A. Surjith, and R. Ratheesh, “New vanadium based Ba3MV4O15 (M = Ti and Zr) high Q ceramics for LTCC applications, Ceram. Int., 39 [4] 3635–3639 (2013).
[21] Huanfu Zhoun, FenHe,XiuliChen, JieChen, LiangFang, WeiWang, YanbingMiao, “A novel thermally stable low-firing LiMg4V3O12 ceramic: Sintering characteristic, crystal structure and microwave dielectric properties , Ceram. Int. ,40 [4] 6335–6338 (2014).
[22] G. G. Yao , and H. W. Zhang , “Novel series of Low-Firing Microwave Dielectrics Ceramics: Ca5A4(VO4)6 (A2+ = Mg, Zn), J. Am. Ceram. Soc., 96 [6] 1691–1693 (2013).
[23] R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI Design Techniques for Analog and Digital Circuits, McGraw-Hill, (1990).
[24] R.A. Pucel, D. J. Masse, C.P. Hartwig, “Losses in microstrip, 16 [6] 342–350 (1968)
[25] J. S. Hong and M. J. Lancaster, “Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, (2001).
[26] G. Kompa, Practical Microstrip Design and Applications, Artech House, (2005).
[27] K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, “Microstrip Lines and Slotlines, Second Edition, Artech House, (1996).
[28] G. L. Matthaei, L. Young, E. M. T. Jones, “Microwave filters, impedence matching networks and coupling structures, Artech House, (1980).
[29] E. J. Denlinger, “Losses of microstrip lines, IEEE Trans. Microwave Theory Tech. 28 [6] 513–522 (1980).
[30] X.C. Zhang, Z.Y. Yu, and J. Xu , “Design of Microstrip Dual-Mode Filters Based on Source-Load Coupling, IEEE Microw. Wireless Compon. Lett., 18 [10] 677–679 (2008).
[31] M. Zhou, X. Tang, and F. Xiao, “Miniature Microstrip Bandpass Filter Using Resonator-Embedded Dual-Mode Resonator Based on Source-Load Coupling, IEEE Microw. Wireless Compon. Lett., 20 [3] 139–141 (2010).
[32] Jae Ryong Lee, “New Compact Bandpass Filter Using Microstrip Resonators with Open Stub InverterIEEE microwave magazine, Vol. 10, No. 12, Oct. 2000
[33]Sang-Won Yun, “Varactor-Tuned Hairpin Bandpass Filter with Enhanced Stopband PerformanceProceedings of Asia-Pacific Microwave Conference 2006
[34] B. W. Hakki and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range, IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
[35] W. E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators, IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
[36] P. Wheless and D. Kajfez, “The use of higher resonant modes in measuring the dielectric constant of dielectric resonators, IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
[37] Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method, IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
[38] Study and Applications of Low-Firing Ceramics (Ba1-xSrx)Mg2(VO4)2(x=0-1) at Microwave Frequency (2014).
[39]A. Grzechnik, P. F. McMillan, “High pressure behavior of Sr3(VO4)2 and Ba3(VO4)2, J. Solid State Chem., 132, 156–162 (1997).
[40]M.-Y. Chen , C.-T. Chia, “Microwave properties of Ba(Mg1/3Ta2/3)O3, Ba(Mg1/3Nb2/3)O3 and Ba(Co1/3Nb2/3)O3 ceramics revealed by Raman scattering, Journal of the European Ceramic Society, 26 1965–1968 (2006)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔