(3.238.99.243) 您好!臺灣時間:2021/05/17 00:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾羽捷
研究生(外文):Yu-ChiehChung
論文名稱:銅電鍍技術應用在N型單晶矽鈍化射極背面完全擴散太陽能電池的正面電極之研究
論文名稱(外文):A Study on Metallization of N-PERT c-Si Solar Cells by Using Copper Electrochemical Deposition
指導教授:李文熙
指導教授(外文):Wen-Hsi Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:105
中文關鍵詞:銅電鍍太陽能電池正面電極高效率
外文關鍵詞:copper electroplatingsolar cellfront electrodehigh efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要是利用銅電鍍技術來製作N型單晶矽鈍化發射極背面完全擴散太陽能電池(N-PERT c-Si solar cell)的正面電極,銅電鍍技術中除了銅本身低電阻率的材料特性外,電鍍技術也可以完成高的高寬比的填孔且成本較傳統正銀電極低,因此本篇論文的目的為使用電鍍之銅電極取代傳統正銀電極,避免其材料成本太高、受到線寬縮小化的限制,希望能以銅電鍍技術開發出低成本正銅電極。
本研究使用已完成抗反射膜沉積、正面用綠光雷射/濕式蝕刻(green laser ablation/wet etching)開孔及具有背電極之N型高效率單晶矽太陽能電池作為基板。正電極的製作先是從作為晶種層及阻擋層的鎳進行電鍍,再來是作為主要導電層的銅電鍍。因兩種不同開孔方式使基板表面的結構有差異,所以進行了電鍍時的電流密度參數展開確保鍍膜完整地沉積,且對於兩種不同基板均進行退火時間展開的實驗,退火的目的主要是為了降低鍍膜與基板間的接觸電阻並且形成可讓鍍膜附著更緊密的矽化鎳(NiSix),不同的退火時機也會對太陽能電池造成不同的影響,對此我們使用了太陽光模擬器I-V量測、SEM、TLM等電/物性分析來觀察不同電鍍/退火參數對元件的影響。
透過實驗與分析,可得知使用銅電鍍技術取代傳統網印技術可以獲得較好的效率及特徵接觸電阻。其中,濕式蝕刻開孔之元件最高太陽能電池轉換效率達19%,填充因子達0.7;綠光雷射開孔之元件最高太陽能電池轉換效率達20.4%,填充因子達0.72,此元件在EDS中有分析出比例約為1:1的矽化鎳,其對於元件的電性有很大的幫助;此外,雷射開孔之元件的特徵接觸電阻大多都在10 mΩcm2以下,維持在正電極所需的標準內。本研究最終成功利用銅電鍍作為金屬化N型高效率太陽能電池的技術。

This thesis is mainly using the copper (Cu) electroplating technique to fabricate front electrodes of N-PERT c-Si solar cells. With regards to the advantages of Cu electroplating as the metallization process, in addition to the low resistivity of Cu, it can also be applied to fill high-aspect-ratio structures and its costs is lower than the traditional silver front electrodes by screen printing. Therefore, the purpose of this thesis is to develop low-cost and high-efficiency solar cells with electroplated Cu front electrodes as alternatives for ones with traditional screen-printed silver front electrode, which is limited by its high cost and miniaturized width.
N-type c-Si solar cells with anti-reflection coatings, back electrodes, and passivation layer opened by green laser/wet etching are used in this study. The stack of front electrodes is copper/nickel, where Ni is used as the seed layer/barrier layer and Cu as the conductive layer. Owing to the difference in surface structure caused by two different opening methods, the electroplating current density and time which would influence the quality of deposition are split in detail. One of the important steps in front electrode fabrication is annealing, which aims to form NiSix that can improve the adhesion between Si and Ni and also decrease the contact resistance. Different annealing time or temperature of solar cell would have different impacts such as gap generation between Ni/Si and the reduction of Voc. Solar simulator I-V measurement, SEM and TEM analysis are used to investigate the effect of different parameters of electroplating/annealing on the device performance.
The results show that solar cells with Cu front electrodes demonstrate high efficiency and low contact resistance (ρc). Among all cells opened by wet etching, the highest efficiency is 19% and fill factor is about 0.7. Among all cells opened by green laser ablation, the highest efficiency is 20.4%, fill factor is 0.72 and the contact resistance of all cells is less than 10 mΩcm2, which meets the requirement of current front electrodes. The cells opened by laser ablation with the highest efficiency has been analyzed by EDS, and the result show that NiSi (atomic ratio about 1:1) is detected which is thought to be beneficial to the electrical properties of the cell. In short, n-type high efficiency solar cells with electroplated Cu front electrodes are successfully developed.

摘要 III
Abstract IV
誌謝 VI
Content VII
Table caption X
Figure caption XII
Chapter 1 Introduction 1
1-1 Background 1
1-1.1 Overview of solar cells 2
1-1.2 Introduction of silicon solar cells 7
1-1.3 High efficiency solar cells and front electrode fabrication 11
1-1.4 Electrodes fabricated by electroplating 15
1-2 Motivation 17
Chapter 2 Principle 18
2-1 Electrical characteristics of solar cells 18
2-1.1 I-V curve 20
2-1.2 Short-circuit current and open-circuit voltage 21
2-1.3 Series and shunt resistance 21
2-1.4 Fill factor 23
2-1.5 Energy conversion efficiency 23
2-2 Principle of electroplating 24
2-2.1 Electrochemical deposition 25
2-2.2 Forward bias plating (FBP) 27
2-2.3 The composition of the plating system 28
2-2.4 Growth mechanism of eletroplated films 30
2-3 Nickle silicide formation 32
2-3.1 Properties of NiSix 32
2-3.2 Advantages and disadvantages of annealing time [20] 35
Chapter 3 Experimental Scheme 37
3-1 Experimental materials 37
3-1.1 Substrates 37
3-1.2 Chemicals 38
3-1.3 Solutions 38
3-2 Process equipment 39
3-2.1 Potentiostat / Galvanostat 39
3-2.2 Rapid thermal annealing (RTA) 40
3-3 Experimental methods and procedures 42
3-3.1 Substrate pre-clean 44
3-3.2 Nickel/Copper electrodeposition and parameter modulation 44
3-3.3 Annealing process 44
3-4 Analysis equipment 45
3-4.1 Solar simulator and I-V measurement 45
3-4.2 Contact resistance and TLM measurement 45
3-4.3 Scanning electron microscope (SEM) 49
3-4.4 Energy dispersive spectroscopy (EDS) 49
3-4.5 Focused Ion Beam (FIB) 50
3-4.6 Transmission electron microscope (TEM) 51
Chapter 4 Results and Discussion 53
4-1 Properties of solar cells with passivation layer opened by wet etching 53
4-1.1 Electrodeposition and peeling issue 53
4-1.2 Influence of annealing condition 58
4-2 Properties of solar cells with passivation layer opened by laser ablation 68
4-2.1 Single-step annealing process 68
4-2.2 Two-step annealing process 77
Chapter 5 Conclusions 98
Reference 100


1.Gray, J.L., “The physics of the solar cell, Handbook of photovoltaic science and engineering, 2003. 2: p. 82-128.
2.Kasten, F., A.T. Young, “Revised optical air mass tables and approximation formula, Applied optics, 1989. 28(22): p. 4735-4738.
3.Laue, E., “The measurement of solar spectral irradiance at different terrestrial elevations, Solar Energy, 1970. 13(1): p. 43-57.
4.Meinel, A., Meinel, MP, “Applied Solar Energy,“. 1976: Addison Wesley Publishing Co.
5.龍健華, 杜政勳, 林福銘, “矽晶太陽電池最新發展趨勢, 工業材料雜誌, 2014. 333.
6.Kerr, M.J., A. Cuevas, P. Campbell, “Limiting efficiency of crystalline silicon solar cells due to Coulomb‐enhanced Auger recombination, Progress in Photovoltaics: Research and Applications, 2003. 11(2): p. 97-104.
7.Bentzen, A., “Phosphorus diffusion and gettering in silicon solar cells, Department of Physics, 2006.
8.鍾健文, 王宗昶, “各式太陽能電池製程介紹與最新技術發展, 遠東學報, 第 30 卷第二期, 2013.
9.Henrie, J., S. Kellis, S. Schultz, A. Hawkins, “Electronic color charts for dielectric films on silicon, Optics express, 2004. 12(7): p. 1464-1469.
10.Pliskin, W., E. Conrad, “Nondestructive determination of thickness and refractive index of transparent films, IBM Journal of Research and Development, 1964. 8(1): p. 43-51.
11.蔡進譯, “超高效率太陽電池-從愛因斯坦的光電效應談起, 物理雙月刊, 2005. 27(5): p. 701-719.
12.Green, M., A. Blakers, S. Wenham, S. Narayanan, M. Willison, M. Taouk, T. Szpitalak. “18th IEEE Photovoltaic Spec. 1985. Conf.
13.Lee, S., “Development of high-efficiency silicon solar cells for commercialization, JOURNAL-KOREAN PHYSICAL SOCIETY, 2001. 39(2): p. 369-373.
14.Zhao, J., A. Wang, P.P. Altermatt, M.A. Green, J.P. Rakotoniaina, O. Breitenstein. “High efficiency PERT cells on n-type silicon substrates. in Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE. 2002. IEEE.
15.Kim, D., E. Lee, J. Kim, S. Lee, “Low-cost contact formation of high-efficiency crystalline silicon solar cells by plating, Journal of the Korean society for New and Renewable Energy, 2005. 1(1): p. 37-43.
16.“Imec Presents Large Area Industrial Crystalline Silicon n-PERT Solar Cell with a Record 22.5 Percent Efficiency, in imec magazine. 2015.
17.Kamp, M., J. Bartsch, S. Nold, M. Retzlaff, M. Hörteis, S. Glunz, “Economic evaluation of two-step metallization processes for silicon solar cells, Energy Procedia, 2011. 8: p. 558-564.
18.Tous, L. “Recaman Payo. in M., Ngamo, M., Hernandez, JL, Poortmans, J., Mertens, RP Evaluating contact resistance using epitaxially grown phosphorous emitters. In: Proceedings of the 26th European Photovoltaic Solar Energy Conference, Hamburg, Germany. 2011.
19.Pysch, D., A. Mette, A. Filipovic, S. Glunz, “Comprehensive analysis of advanced solar cell contacts consisting of printed fine‐line seed layers thickened by silver plating, Progress in Photovoltaics: Research and Applications, 2009. 17(2): p. 101-114.
20.Michaelson, L., K. Munoz, J.C. Wang, Y. Xi, T. Tyson, A. Gallegos. “Improved contact formation for large area solar cells using the alternative seed layer (ASL) process. in Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE. 2012. IEEE.
21.Durkee, L.F., “Method of plating by means of light. 1979, Google Patents.
22.Bard, A.J., L.R. Faulkner, J. Leddy, C.G. Zoski, “Electrochemical methods: fundamentals and applications,“. Vol. 2. 1980: Wiley New York.
23.Grenon, L.A., “For pn junction of a photoelectric device. 1981, Google Patents.
24.Bartsch, J., M. Kamp, M. Hörteis, S. Glunz, A. Gombert, H. Reinecke, “Effects of seed layer and substrate morphology on solar cell contacts deposited by light-induced plating, Journal of the Electrochemical Society, 2011. 158(6): p. H651-H658.
25.Lee, E., D. Kim, S. Lee, “Ni/Cu metallization for low-cost high-efficiency PERC cells, Solar energy materials and solar cells, 2002. 74(1): p. 65-70.
26.Knauss, H., B. Terheiden, P. Fath, “Large-area metallisation wrap through solar cells using electroless plating, Solar energy materials and solar cells, 2006. 90(18): p. 3232-3237.
27.Lee, S., “Cost effective process for high-efficiency solar cells, Solar Energy, 2009. 83(8): p. 1285-1289.
28.Chaudhari, V.A., C.S. Solanki, “A novel two step metallization of Ni/Cu for low concentrator c-Si solar cells, Solar Energy Materials and Solar Cells, 2010. 94(12): p. 2094-2101.
29.Sullivan, M.V., J.H. Eigler, “Electroless nickel plating for making ohmic contacts to silicon, Journal of the electrochemical Society, 1957. 104(4): p. 226-230.
30.Iwasa, H., M. Yokozawa, I. Teramoto, “Electroless nickel plating on silicon, Journal of The Electrochemical Society, 1968. 115(5): p. 485-488.
31.Boulord, C., A. Kaminski, B. Canut, S. Cardinal, M. Lemiti, “Electrical and structural characterization of electroless nickel–phosphorus contacts for silicon solar cell metallization, Journal of The Electrochemical Society, 2010. 157(7): p. H742-H745.
32.Su, Y.-H., W.-Y. Ma, T.-N. Yang, S.-M. Lan, “An investigation of the mechanisms of light-induced nickel plating on P-type silicon substrates, Int. J. Electrochem. Sci, 2012. 7: p. 10711-10721.
33.Minsek, D., “Light induced electroless plating. 2014, Google Patents.
34.Bartsch, J., M. Kamp, D. Hartleb, C. Wittich, A. Mondon, B. Steinhauser, F. Feldmann, A. Richter, J. Benick, M. Glatthaar, “21.8% efficient n-type solar cells with industrially feasible plated metallization, Energy Procedia, 2014. 55: p. 400-409.
35.Raval, M.C., C.S. Solanki, “Review of Ni-Cu based front side metallization for c-Si solar cells, Journal of Solar Energy, 2013. 2013.
36.Schroder, D.K., D.L. Meier, “Solar cell contact resistance—a review, Electron Devices, IEEE Transactions on, 1984. 31(5): p. 637-647.
37.Deng, F., R. Johnson, P. Asbeck, S. Lau, W. Dubbelday, T. Hsiao, J. Woo, “Salicidation process using NiSi and its device application, Journal of applied physics, 1997. 81(12): p. 8047-8051.
38.Xu, D.-X., S. Das, C. Peters, L. Erickson, “Material aspects of nickel silicide for ULSI applications, Thin Solid Films, 1998. 326(1): p. 143-150.
39.Jacquet, P.A., “Adhesion of electrolytic copper deposits, Transactions of the Electrochemical Society, 1934. 66(1): p. 393-426.
40.“Photon International. 2011. p. 6.
41.林明獻, “太陽電池入門技術,“. 3 ed. 2008: 全華圖書股份有限公司.
42.Schubert, G., J. Horzel, R. Kopecek, F. Huster, P. Fath. “Silver thick film contact formation on lowly doped phosphorous emitters. in at this conference. 2005.
43.Nelson, J., “The physics of solar cells,“. Vol. 1. 2003: World Scientific.
44.Fink, J., J.M. Hoey, D.L. Schulz. “Fine Line Metallization of Silicon Solar Cells via Collimated Aerosol Beam Direct Write. in ASME 2012 International Mechanical Engineering Congress and Exposition. 2012. American Society of Mechanical Engineers.
45.Paunovic, M., M. Schlesinger, “Fundamentals of electrochemical deposition,“. Vol. 45. 2006: john wiley & sons.
46.胡啟章, “電化學原理與方法,“. 2002: 五南圖書出版股份有限公司.
47.Gosser, D., “Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms; 1993, New York: VCH, 1993.
48.Budevski, E.B., G.T. Staikov, W.J. Lorenz, “Electrochemical phase formation and growth: an introduction to the initial stages of metal deposition,“. 2008: John Wiley & Sons.
49.Aleman, M., N. Bay, D. Barucha, A. Knorz, D. Biro, R. Preu, S. Glunz, M. Assmus, S. Jack, M. Koehl, “Advances in electroless nickel plating for the metallization of silicon solar cells using different structuring techniques for the ARC, Proc. of the 24th EUPVSEC, 2009: p. 53-56.
50.Nagahiro, K., K. Tsutsui, T. Shiozawa, R. Xiang, P. Ahmet, K. Kakushima, Y. Okuno, M. Matsumoto, M. Kubota, H. Iwai. “Thermal stability of NiSi controlled by post silicidation metal doping method. in Solid-State and Integrated Circuit Technology, 2006. ICSICT'06. 8th International Conference on. 2006. IEEE.
51.Raval, M.C., C.S. Solanki, “Characterization of electroless nickel as a seed layer for silicon solar cell metallization, Bulletin of Materials Science, 2015. 38(1): p. 197-201.
52.Braun, S., E. Emre, B. Raabe, G. Hahn. “Electroless nickel and copper metallization: Contact formation on crystalline silicon and background plating behavior on pecvd silicon sinx: h layers. in 25th European Photovoltaic Solar Energy Conference and Exhibition. 5th World Conference on photovoltaic Energy Conversion. 2010.
53.Mondon, A., D. Wang, A. Zuschlag, J. Bartsch, M. Glatthaar, S.W. Glunz, “Nanoscale investigation of the interface situation of plated nickel and thermally formed nickel silicide for silicon solar cell metallization, Applied Surface Science, 2014. 323: p. 31-39.
54.Min, S.K., D.H. Kim, S.H. Lee, “Nickel silicide for Ni/Cu contact mono-silicon solar cells, Electronic Materials Letters, 2013. 9(4): p. 433-435.
55.Sze, S.M., K.K. Ng, “Physics of semiconductor devices,“. 2006: John wiley & sons.
56.Geisler, C., W. Hördt, S. Kluska, A. Mondon, S. Hopman, M. Glatthaar, “Overcoming electrical and mechanical challenges of continuous wave laser processing for Ni–Cu plated solar cells, Solar Energy Materials and Solar Cells, 2015. 133: p. 48-55.
57.Tsutsui, K., R. Xiang, K. Nagahiro, T. Shiozawa, P. Ahmet, Y. Okuno, M. Matsumoto, M. Kubota, K. Kakushima, H. Iwai, “Analysis of irregular increase in sheet resistance of Ni silicides on transition from NiSi to NiSi 2, Microelectronic Engineering, 2008. 85(2): p. 315-319.
58.Guvench, M., C. Gurcan, K. Durgin, D. MacDonald, “Solar simulator and IV measurement system for large area solar cell testing, age, 2004. 9: p. 1.
59.施仁親, 陳震偉, 吳登峻, “太陽光模擬器要求與新型 LED 太陽光模擬器簡介, 光連: 光電產業與技術情報, 2011(92): p. 56-62.
60.Lombardo, S., L. Palmisano, O. Isabella, “Thin-Film Photovoltaics 2014.
61.Dobrzański, L., M. Musztyfaga, A. Drygała, P. Panek, “Investigation of the screen printed contacts of silicon solar cells using Transmission Line Model, Journal of Achievements in Materials and Manufacturing Engineering, 2010. 41(1-2): p. 57-65.
62.Ummartyotin, S., J. Juntaro, C. Wu, M. Sain, H. Manuspiya, “Deposition of PEDOT: PSS nanoparticles as a conductive microlayer anode in OLEDs device by desktop inkjet printer, Journal of Nanomaterials, 2011. 2011: p. 26.
63.Zeng, F., Y. Feng, Z. Liang, H. Shen. “Specific contact resistance measurements on C-Si solar cells by novel TLM method. in Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE. 2012. IEEE.
64.Kanda, K., “Energy dispersive X-ray spectrometer. 1991, Google Patents.
65.Warren, B.E., “X-ray Diffraction,“. 1969: Courier Corporation.
66.Shindo, D., T. Oikawa, “Analytical electron microscopy for materials science,“. 2013: Springer Science & Business Media.
67.Mette, A., P. Richter, M. Hörteis, S. Glunz, “Metal aerosol jet printing for solar cell metallization, Progress in Photovoltaics: Research and Applications, 2007. 15(7): p. 621-627.
68.Gee, J.M., W.K. Schubert, P.A. Basore. “Emitter wrap-through solar cell. in Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE. 1993. IEEE.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top